Supplementary Information

CONTENTS:
Table S1: Brief literature survey S-2
Table S2: Data of life time S-3
Table S3 : Energy (eV) of selected M.O.s of H_2L and $[Al(L)]^+$.S-4-5
Table S4: Mulliken atomic charge distribution of [Al(L)]+ complex. S-6-8
Figure S1: FTIR spectra of H_2L showing sharp peak at 1647 cm-1 for C=N
bondS-9
Figure S2: FTIR spectra of [Al(L)]NO ₃ showing sharp peak at 1646 cm-1 for C=N
bondS-9
Figure S3: 1HNMR Spectrum of Azo aldehydeS-10
Figure S4: ¹ HNMR Spectrum of the ligand, H ₂ LS-11
Figure S5: ¹³ CNMR Spectrum of the ligand, H ₂ LS-12
Figure S6: ¹³ CNMR-DEPT135 Spectrum of the ligand, H ₂ LS-13
Figure S7: Mass Spectrum of Azo aldehydeS-14
Figure S8: Mass spectrum of the ligand, H ₂ LS-15
Figure S9: Simulated mass spectrum of the ligand, H ₂ LS-16
Figure S10: Mass Spectrum of the complex, [Al(L)] ⁺ S-17
Figure S11: Supramolecular architecture of azoaldehydeS-18
Figure S12: Supramolecular architecture of H ₂ LS-18
Figure S13: Bar diagram for selectivity of H_2L over other cationsS-19
Figure S14: Pictorial representation of Benesi-Hildebrand equation S-20
Figure S15: Pictorial representation of Job's plot
Figure S16: Pictorial representation of Job's plotS-21
Figure S17: Simulated mass Spectrum of the complex, [Al(L)] ⁺ S-22

Table S1: Comparison of a few aspects of some recently published Al³⁺ sensors.

Sl.	Probe	Method for	Interfering	Excitation(nm)/	Limit of	Cell	Refs.
No.		Al ³⁺ detection	Ions	Emission(nm)	detection	imaging	
					(LOD)		
1.	2-Hydroxybenzene-1-carbohydrazide-1-	CHEF	None	330/406	8.8× 10 ⁻⁹ M	Yes	14a
	(benzo[1,3]-oxazino[2,3-a]phthalazin-4-one)						
2.	2-((naphthalen-6-yl)methylthio)ethanol	CHEF	None	350/449	$1.0 \times 10^{-8} \mathrm{M}$	Yes	14e
3.	(Coumarin-Triazolyl-Bipyridyl) Click	CHEF	None	320/443	$1.0 \times 10^{-7} \mathrm{M}$	No	14i
	Fluoroionophore						
4.	2-hydroxy-((2-phenyl-2H-1,2,3-triazol-4-	CHEF	None	358/442	$1.2 \times 10^{-8} \mathrm{M}$	No	14j
	yl)methylene)benzohydrazide						
5.	(1-((E)-(2-(2-	CHEF	None	360/455	5.0× 10 ⁻⁸ M	Yes	14k
	(phenylthio)ethylthio)phenylimino)methyl)naphth						
	alen-						
	2-ol (L ₂)						
6.	Rhodamine-Based Fluorescent Probe	CHEF/FRET	None	460/585	$5.0 \times 10^{-9} \mathrm{M}$	Yes	14 l
7.	Rhodamine Schiff base (L)	CHEF	None	525/590	60.37× 10 ⁻⁹ M	Yes	14m
8.	(Z)-N-benzylidenenaphthalen-1-amine	CHEF	None	310/430	$5.0 \times 10^{-5} \mathrm{M}$	Yes	14n
9.	(E)-N'-((E)-3-(4-	CHEF	Cd ²⁺	410/505	8.7×10 ⁻⁶ M	Yes	140
	(dimethylamino)phenyl)allylidene)picolinohydrazi						
	$de(L_1)$						
10.	spirobenzopyran-quinoline (SBPQ)	CHEF	Fe ³⁺ ,Cr ³⁺	460/675	$3.24 \times 10^{-8} \mathrm{M}$	Yes	14p
11.	(E)-6,6'-((1E,1'E)-(propane-1,3-	CHEF	None	388/478	6.93×10 ⁻⁹ M	NO	This
	diylbis(azanylylidene))bis(methanylylidene))bis(2-						work
	methoxy-4-((E)-phenyldiazenyl)phenol)						

Table S. Data of lifetime of H_2L and H_2L+Al^{3+}

	τ _f	χ²	Φ _f
	(ns) (average)		
H ₂ L	1.324	1.072185	0.00939
H_2L+Al^{3+}	2.058	1.128573	0.2133

Table S3.Energy (eV) of selected M.O.s of H_2L and $[Al(L)]^+$.

M.O.s	$\mathbf{H_{2}L} \qquad [\mathrm{Al}(\mathrm{L})]^{+}$	
	Energ	y(eV)
LUMO+5	0.05	-0.78
LUMO+4	0.01	-0.78
LUMO+3	-1.12	-1.04
LUMO+2	-1.36	-1.86
LUMO+1	-1.92	-2.41
LUMO	-1.97	-2.62
НОМО	-5.35	-6.59
HOMO-1	-5.46	-6.62

НОМО-2	-5.93	-7
НОМО-3	-5.98	-7.21
HOMO-4	-6.24	-7.33
НОМО-5	-6.35	-7.34

Table S4. Mulliken atomic charge distribution of [Al(L)]⁺ complex.

Complex 1	
Mulliken atomic charges:	
1 O -0.404536	
2 O -0.435455	
3 O -0.478657	
4 O -0.483326	
5 N -0.229747	
6 N -0.251442	
7 N -0.329038	
8 N -0.323436	
9 N -0.267103	
10 N -0.272469	
11 C 0.326391	
12 C -0.400138	
13 C -0.095726	
14 H 0.154695	
15 C 0.216592	
16 C -0.164443	
17 H 0.156349	
18 C 0.354697	
19 C -0.224421	
20 H 0.181811	
21 H 0.202674	
22 H 0.180897	
23 C 0.233869	
24 C -0.109529	
25 H 0.114254	6
26 C -0.097171	U
27 H 0.128830	
28 C -0.092996	

29 H 0.126952

30	С	-0.109485
31	Η	0.125098
32	С	-0.108678
33	Η	0.094019
34	С	-0.072738
35	Η	0.203269
36	С	-0.167410
37	Η	0.203223
38	Η	0.205489
39	С	-0.337972
40	Η	0.203710
41	Η	0.196424
42	С	-0.146297
43	Η	0.167064
44	Η	0.215603
45	С	-0.129332
46	Η	0.183245
47	С	-0.187025
48	С	0.295823
49	С	0.341025
50	С	-0.229563
51	Η	0.173201
52	Η	0.201479
53	Η	0.187836
54	С	-0.176619
55	Η	0.143779
56	С	0.234311
57	С	-0.140111
58	Η	0.144796
59	С	0.226672
60	С	-0.113613
61	Η	0.119777
62	С	-0.096821

63 H 0.129015
64 C -0.089331
65 H 0.129357
66 C -0.105230
67 H 0.129645
68 C -0.118527
69 H 0.129170
70 A1 1.227343
Sum of Mulliken atomic charges = 1.00000

Figure S1. FT-IR spectrum of H₂L.

Figure S2. FT-IR spectrum of H_2L with Al(NO₃)₃ salt in 1:1 ratio.

FigureS3. ¹H NMR(d6-DMSO, 300 MHz) spectrum of **azo aldehyde**.

FigureS4. ¹HNMR(CDCl₃, 300 MHz) spectrum of H_2L .

Figure S5. ¹³CNMR(d6-DMSO, 300 MHz) spectrum of H_2L .

FigureS6. ¹³CNMR-DEPT135(d6-DMSO, 300 MHz) spectrum of H_2L .

FigureS7. Mass Spectrum of Azo aldehyde.

FigureS8. Mass Spectrum of H₂L.

FigureS9. Simulated Mass Spectrum of H₂L.

Figure S10. Mass Spectrum of H_2L with Al^{3+} system in 1:1 molar ratio in methanol.

Figure S11. 2D supramolecular sheet of azoaldehyde showing H-bonding and edge to edge π - π interactions. Hydrogen atoms of least interest are omitted for clarity.

Figure S12. Dimerized form of H_2L . Hydrogen atoms of least interest are omitted for clarity.

Figure S13. 1- H_2L +Al³⁺, 2- H_2L , 3 – 17 H_2L + Cations, Cations = 3-Ag⁺, 4-Cd²⁺, 5-Fe³⁺, 6-Cu²⁺, 7-Cr³⁺, 8-K⁺, 9-Hg²⁺, 10-Ca²⁺, 11-Fe²⁺, 12-Mn²⁺, 13-Zn²⁺, 14-Sn²⁺, 15-Ni²⁺, 16-Na⁺, 17-Co²⁺.

Figure S14. Benesi-Hildebrand equation : A plot of $\frac{F_{max} - F_0}{F_x - F_0} v_s \left(\frac{1}{[M]^1}\right)$. Symbols and solid lines represent the experimental and simulated profiles, respectively.

FigureS15. 1:1 binding stoichiometry shown by Job's plot. Symbols and solid lines represent the experimental and simulated profiles, respectively.

FigureS16. 1:1 binding stoichiometry shown by Job's plot Symbols and solid lines represent the experimental and simulated profiles, respectively.

FigureS17. Simulated Mass Spectrum of H₂Lwith Al³⁺system in 1:1 molar ratio in methanol.