Supporting Information

Title

Lanthanum ions doped nano TiO_2 encapsulated in Zeozyme and impregnated in a polystyrene film - As photocatalyst for degradation of diuron in aquatic ecosystem

B. R. Saranya^a, V. Sathiyanarayanan^b and S. T. Maheswari*^a

a. Department of Analytical Chemistry, International Institute of Biotechnology and Toxicology (IIBAT), Padappai, Chennai, Tamil Nadu - 601 301, India.

E-mail: maheswariraja@yahoo.com

b. Department of Analytical Chemistry, Palamur biosciences Pvt. Ltd, Mahabubnagar Telangana State - 509 002, India.

Table of Contents

	Page
Fig. S1 XRD spectra of (a) np; (b) Lnp; (c) ZLT.	2
Fig. S2 Red shifted DRS-UV spectra of (a) NaY Zeolite; (b) Lnp; (c) ZLnp; (d) np.	3
Fig. S3 Blue shifted DRS-UV spectra of (a) Bare polystyrene film; (b) ZLT;	4
(1) Bathochromic shift $\Delta \lambda = 4$ nm;	
(2) Hypochromic shift -10 fold decrease in intensity.	
Fig. S4 Fluorescence spectra of (a) np; (b) Lnp.	5
Fig. S5 SEM-EDAX Spectrum.	6
Fig. S6 Reusability of ZLT for degradation of diuron in ecosystem.	7
Fig. S7 Degradation curves of diuron with (a) np; (b) Lnp; (c) NaY Zeolite; (d) ZLnp	. 8
Fig. S8 Degradation curve of diuron.	9
Table S1 BET Results	10
Table S2 Comparison results of diuron degradation with all catalysts prepared	11
Table S3 DT ₅₀ values of Diuron	12

Fig. S1 XRD spectra of (a) np; (b) Lnp; (c) ZLT.

Fig. S2 Red shifted DRS-UV spectra of (a) NaY Zeolite; (b) Lnp; (c) ZLnp; (d) np.

Fig. S3 Blue shifted DRS-UV spectra of (a) Bare polystyrene film; (b) ZLT;

- (1) Bathochromic shift $\Delta \lambda = 4$ nm;
- (2) Hypochromic shift -10 fold decrease in intensity.

Fig. S4 Fluorescence spectra of (a) np; (b) Lnp.

Fig. S5 SEM-EDAX Spectrum.

Fig. S6 Reusability of ZLT for degradation of diuron in ecosystem.

Fig. S7 Degradation curves of diuron with (a) np; (b) Lnp; (c) NaY Zeolite; (d) ZLnp.

Fig. S8 Degradation curve of diuron.

Table S	S1 BET	Results
---------	--------	---------

SampleSurface	area (m²/g)	Pore volume (ml/g)	
NaY	628	0.38	
ZLnp	3.2808	0.06	

S.No	Catalyst	Weight of catalyst (grams)	Time (hours)	DT ₅₀	Catalyst recovery	Reusability
1	nP	1.021	28	6.69	10.50%	No
2	Lnp	2.516	26	5.33	10.18%	No
3	NaY Zeolite	2.557	50*	11.11*	50.03%	No
4	ZLnP	1.685	24	4.24	25.22%	No
5	ZLT	0.258	9	2.01	100%	Yes

 Table S2 Comparison results of diuron degradation with all catalysts prepared

*Days

 Table S3 DT₅₀ values of Diuron

Hours	Concentration (mg/L)	Log	of Concentration
0	20		1.3010
1	18		1.2480
2	12		1.0751
3	7		0.8709
4	6		0.7510
5	4		0.6129
6	3		0.5046
7	2		0.3389
8	1		0.0808
9	0		0.0000
		Slope	-0.1501
		DT ₅₀	2.01 h