Easily accessible and recyclable copper nanocatalyst for solvent free synthesis of

dipyrromethanes and aromatic amines

Sengan Megarajan, Khan Behlol Ayaz Ahmed, Rajamani Rajmohan, Pothiappan Vairaprakash*,

Veerappan Anbazhagan*

Department of Chemistry, School of Chemical and Biotechnology, SASTRA University,

Thanjavur, Tamil Nadu, India 613 401

Table of Contents:

Content	Page. No
¹ H & ¹³ C NMR spectrum of 5-(4-methoxyphenyl)dipyrromethane	S1, S2
¹ H & ¹³ C NMR spectrum of of 5-phenyldipyrromethane	S3, S4
¹ H & ¹³ C NMR spectrum of 5-(4-chlorophenyl)dipyrromethane	S5, S6
¹ H NMR spectrum of 5-(2-fluorophenyl)dipyrromethane	S7
¹ H & ¹³ C NMR spectrum of compound 5-(4-nitrophenyl)dipyrromethane	e S8, S9
¹ H & ¹³ C NMR spectrum of compound 5-(3-nitrophenyl)dipyrromethane	e S10, S11
¹ H NMR spectrum of 5,5'-((3-nitrophenyl)methylene)-	
bis(2,4-dimethyl-1 <i>H</i> -pyrrole)	S12, S13
UV-vis spectrum of 4-nitroaniline and its reduction product	S14
UV-vis spectrum of 2-nitroaniline and its reduction product	S15
UV-vis spectrum of 4-methyl-2-nitroaniline and its reduction product	S15
UV-vis spectrum of 4-nitroacetanilide and its reduction product	S15
UV-vis spectrum of 2,4,6-trinitrophenol and its reduction product	S16
TEM image and PXRD of CuNPs after the reaction	S16
¹ H NMR spectrum of p-phenylene diamine (crude)	S17
¹ H NMR spectrum of methyl 4-aminobenzoate (crude)	S18
References	S19

Fig. S1: ¹**H NMR spectrum of 5-(4-methoxyphenyl)dipyrromethane:** ¹H NMR (400 MHz, CDCl₃) 3.77 (s, 3H), 5.37 (s, 1H), 5.88 (s, 2H), 6.14 (d, *J* = 2.8 Hz, 2H), 6.40 (dd, *J*₁ = 4 Hz, *J*₂ = 2.4 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.85 (br s, 2H).^{S1}

Fig. S2: ¹³**C NMR spectrum of 5-(4-methoxyphenyl)dipyrromethane:** ¹³**C NMR (100 MHz, CDCl₃) 43.4, 55.8, 107.3, 108.4, 114.9, 117.2, 129.7, 133.0, 134.3, 158.5.^{S1}**

Fig. S3: ¹**H NMR spectrum of 5-phenyldipyrromethane:** ¹H NMR (400 MHz, CDCl₃) 5.46 (s, 1H), 5.91 (br s, 2H), 6.15 (dd, *J*₁ = 6.0 Hz, *J*₂ = 2.8 Hz, 2H), 6.68 (dd, *J*₁ = 6.0 Hz, *J*₂ = 2.4 Hz, 2H), 7.20-7.29 (m, 5H), 7.90 (br s, 2H).^{S1}

Fig. S4: ¹³**C NMR spectrum of 5-phenyldipyrromethane:** ¹³**C NMR** (100 MHz, CDCl₃) 44.0, 107.3, 108.5, 117.2, 127.0, 128.4, 128.7, 132.5, 142.1.^{S1}

Fig. S5: ¹H NMR spectrum of 5-(4-chlorophenyl)dipyrromethane: ¹H NMR (400 MHz, CDCl₃) 5.43 (s, 1H), 5.87 (br s, 2H), 6.15 (dd, $J_1 = 5.6$ Hz, $J_2 = 2.8$ Hz, 2H), 6.69 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.97 (br s, 2H).^{S2}

Fig. S6: ¹³**C NMR spectrum of 5-(4-chlorophenyl)dipyrromethane:** ¹³**C NMR (100 MHz, CDCl₃) 43.4, 107.4, 108.5, 117.5, 128.7, 129.8, 132.0, 132.7, 140.7.^{S2}**

Fig. S7: ¹**H NMR spectrum of 5-(2-fluorophenyl)dipyrromethane:** ¹H NMR (300 MHz, CDCl₃) 5.63 (s, 1H), 5.82 (br s, 2H), 6.07 (dd, $J_1 = 6$ Hz, $J_2 = 2.7$ Hz, 2H), 6.59 (dd, $J_1 = 3.9$ Hz, $J_2 = 2.7$ Hz, 2H), 6.94-7.19 (m, 4H), 7.89 (br s, 2H).

Fig. S8: ¹H NMR spectrum of 5-(4-nitrophenyl)dipyrromethane: ¹H NMR (400 MHz, CDCl₃) 5.52 (s, 1H), 5.80 (br s, 2H), 6.12 (dd, $J_1 = 6$ Hz, $J_2 = 2.7$ Hz, 2H), 6.68 (dd, $J_1 = 4.2$ Hz, $J_2 = 2.7$ Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 7.94 (br s, 2H), 8.10 (d, J = 8.7 Hz, 2H).^{S1}

Fig. S9: ¹³**C NMR spectrum of 5-(4-nitrophenyl)dipyrromethane:** ¹³**C NMR (100 MHz, CDCl₃) 43.4, 107.4, 108.5, 117.5, 128.7, 129.8, 132.0, 132.7, 140.7.**^{S1}

Fig. S10: ¹H NMR spectrum of 5-(3-nitrophenyl)dipyrromethane: ¹H NMR (400 MHz, CDCl₃) 5.59 (s, 1H), 5.87 (br s, 2H), 6.18 (dd, $J_1 = 6$ Hz, $J_2 = 2.7$ Hz, 2H), 6.76 (dd, $J_1 = 3.9$ Hz, $J_2 = 2.7$ Hz, 2H), 7.46-7.61 (m, 2H), 8.03 (br s, 2H), 8.10-8.14 (m, 2H).^{S1}

Fig. S11: ¹³**C NMR spectrum of 5-(3-nitrophenyl)dipyrromethane:** ¹³**C NMR (100 MHz, CDCl₃) 44.0, 107.3, 108.5, 117.2, 127.0, 128.4, 128.7, 132.5, 142.1.^{S1}**

Fig. S12: ¹**H NMR spectrum of 5,5'-((3-nitrophenyl)methylene)bis(2,4-dimethyl-1***H***-pyrrole):** ¹H NMR (300 MHz, CDCl₃) 1.81 (s, 6H), 2.17 (s, 6H), 5.53 (s, 1H), 5.73 (d, *J* = 2.4 Hz, 2H), 7.22 (br s, 2H), 7.47-7.51 (m, 2H), 8.02 (br s, 1H), 8.06-8.11 (m, 1H).

Fig. S13: ¹³**C NMR spectrum of 5,5'-((3-nitrophenyl)methylene)bis(2,4-dimethyl-1***H***-pyrrole):** ¹³**C NMR (75 MHz, CDCl₃) 11.1, 13.1, 40.4, 109.0, 115.6, 121.8, 123.1, 124.4, 126.4, 129.5, 134.5, 144.9, 148.7.**

Fig. S14: UV-vis spectrum of 4-nitroaniline and its reduction product

Fig. S15: UV-vis spectrum of 2-nitroaniline and its reduction product

Fig. S16: UV-vis spectrum of 4-methyl-2-nitroaniline and its reduction product

Fig. S17: UV-vis spectrum of 4-nitroacetanilide and its reduction product

Fig. S18: UV-vis spectrum of 2,4,6-trinitrophenol and its reduction product

Fig. S19: (A) TEM image and (B) PXRD of CuNPs after the reaction. It is clear from the micrograph and XRD that the NPs morphology and crystallinity is unchanged after participating in the reaction as a catalyst.

Fig. S20: ¹**H NMR spectrum of p-phenylene diamine (crude):** ¹H NMR (300 MHz, CDCl₃) 3.15 (br s, 4H), 6.58 (s, 4H).

Fig. S21: ¹**H NMR spectrum of methyl 4-aminobenzoate (crude):** ¹H NMR (300 MHz, CDCl₃) 3.85 (s, 3H), 4.09 (br s, 2H), 6.63 (d, *J* = 9.0 Hz, 2H), 7.84 (d, *J* = 9.0 Hz, 2H).^{S3}

References:

- S1. K. Singh, S. Behal and M. S. Hundal *Tetrahedron* 2005, **61**, 6614–6622.
- S2. K. Singh, S. Sharma and A. Sharma *J. Mol. Cat. A: Chemical* 2011, **347**, 34–3.
- S3. H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu *Chem. Eur. J.* 2011, **17**, 5652-5660.