Supplementary Information

A New Water-Soluble Heteronuclear Pd^{II}-Au^I Pincer Complex as Two-Photon

Luminescent Probe for Biological Co²⁺ Detection

Leila Tabrizi*, Hossein Chiniforoshan*

Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran

* Corresponding author: Leila Tabrizi; Email: l.tabrizi@ch.iut.ac.ir

*Corresponding author: H. Chiniforoshan; Email: Chinif@cc.iut.ac.ir

Scheme S1. Synthesis of ligand HL.

Scheme S2. Resonance structures of DPS²⁻ anionic ligand.

Fig.S1. The structure of complex **1**.

Fig. S2. ¹ H NMR spectrum of ligand HL.

Fig. S3. ¹³ C NMR spectrum of ligand HL.

Fig. S4.¹ H NMR spectrum of ligand DPSH₂.

Fig. S5. ¹³ C NMR spectrum of ligand DPSH₂.

Fig. S6. ¹H NMR spectrum of complex 1.

Fig. S7. ¹³C NMR spectrum of complex 1.

Fig. S8. TOF MS spectrum of complex 1

Fig. S9. The binding constant value of Co^{2+} with **1** has been determined from the luminescence titration data following the modified Benesi-Hildebrand equation.

Fig.S10. UV-Vis spectral changes of **1** (10 μ M) upon the addition of Co²⁺ (0-50 μ M) in aqueous solution (HEPES buffer solution, 10 mM, pH = 7.4).

Fig. S11. TOF MS spectrum of complex K[1+CoCl₂]

Fig. S12. The emission spectral changes of 10 μ M complex 1 upon the addition of 50 μ M of different types of cobalt salts in HEPES buffer solution (CoCl₂, Co(NO₃)₂, Co(OAc)₂, CoSO₄) in aqueous solution.

Fig. S13. The logarithmic plots of the power dependence of relative two-photon induced luminescence intensity of 1 as a function of pump power at an excitation wavelength of 850 nm. The solid lines are the best-fit straight lines with gradient n = 1.9887, indicating that 1 is two-photon excitation active.

Fig. S14. Time courses of 1 and Rhodamine B by fluorescence spectrophotometer (λ_{ex} = 365 nm,

 λ_{em} = 450 nm for 1 and 582 nm for Rhodamine B).

Fig. S15. The luminescence intensity of 1 (10 μ M) with and without Co²⁺ (50 μ M) as a function of pH in aqueous solution.

Protons	HL	DPSH ₂	1
H-4'	7.84-7.79 (m, 2H)	-	7.93 (d, 2H, ³ <i>J</i> 8.0)
H-1	7.54 (t, 1H, ⁴ <i>J</i> 1.4)	-	-
H-5'	7.47-7.38 (m, 4H)	-	7.03 (t, 2H, ³ <i>J</i> 8.0)
H-6'			7.30 (t, 2H, ³ <i>J</i> 8.0)
H-3,5	7.35-7.29 (m, 2H)	-	6.72 (s, 2H)
H-7'			6.97 (d, 2H, ³ <i>J</i> 8.0)
H-7	3.83 (s, 3H)	-	3.85 (s, 3H)
H-10'	3.39 (s, 6H)	-	3.41 (s, 6H)
H-Ar (DPSH ₂)	-	6.79 (d, 4H, ³ <i>J</i> 8.0)	6.19 (d, 2H, ³ <i>J</i> 8.0)
H-Ar (DPSH ₂)	-	6.99 (d, 4H, ³ J 8.0)	6.27 (d, 2H, ³ <i>J</i> 8.0)
H-Ar (DPSH ₂)	-	-	6.41 (d, 2H, ³ <i>J</i> 8.0)
H-Ar (DPSH ₂)	-	-	6.52 (d, 2H, ³ <i>J</i> 8.0)
H-NH (DPSH ₂)	-	8.11 (s, 1H)	_

Table S1. Selected ¹H NMR data of HL, **1** and **2** (in DMSO- d_6 , δ : ppm)