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Figure S1. Physical appearance of the organogels: (lipoamino acid gelator) solvent: a) 1, petroleum ether; b) 1,
petrol; c) 1, hexane; d) 1, pentane; e) 1, cyclohexane; f) 1, heptane; g) 2, hexane; h) 2, heptane; i) 3, toluene;
j) 3, xylene; k) 3, benzene; 1) 3, petrol; m) 4, toluene; n) 4, acetonitrile; o) 4, xylene; p) 4, benzene; q) 4, ethanol;
r) 4, cyclohexane; s) 4, heptane. (All gels were prepared at CGC).
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Figure S2. Frequency sweep at 25 °C at a strain of 0.1% of 3 in toluene 1.3w/v % at 24 (4), 48 (m), 72 (A), 96
(®) and 120 (). (G’ (filled markers), G” (empty markers) and tand (dot filled markers).
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Figure S3. Differential scanning calorimetry scans of the gel formed by a) 1 in hexane (0.7 w/v %) and b) 2 in
hexane (1.3 w/v %) during the heating/cooling cycles. The sample was heating from 2°C to 60°C at 2°C/min
and cooling the same range of temperature; c) 3 in toluene (1.3 w/v %) and d) 4 in toluene (1.4 w/v %) during
the heating/cooling cycles. The sample was heating from 11°C to 65°C at 2°C/min and cooling the same range
of temperature. Reproducible/duplicated cycles for the four samples.
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Figure S4. SEM images of xerogels formed by lipoamino acids 1-4. lipoamino acid gelator, solvent: a) 1,
petroleum ether; b) 1, petrol; c) 1, hexane; d) 1, pentane; e) 1, cyclohexane; f) 1, heptane; g) 2, hexane; h) 2,
heptane; i) 3, toluene; j) 3, xylene; k) 3, benzene; ) 3, petrol; m) 4, toluene; n) 4, acetonitrile; o) 4, xylene; p) 4,
benzene; q) 4, ethanol; r) 4, cyclohexane; s) 4, heptane; (All gels were prepared at CGC).
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Figure S6. FTIR spectra of lipoamino acids 3 and 4 (solid state, from NaCl film).
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Figure S7. FTIR spectra of chloroform (black), lipoamino acids 1 (Blue) and 3 (Red) in chloroform solution
(transmission cell).
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Figure S8. FTIR spectra of lipoamino acid 3 in 1.3 w/v% in toluene from 0 — 135 min. The solution injected into

the cell was held at 50°C and was then was allowed to cool to room temperature. The vNH region and the vCO
region are shown.
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Figure S9. FTIR spectra of lipoamino acid 1 0.7w/v% in cyclohexane from 0 — 135 min. The solution injected
into the cell was held at 50°C and was then was allowed to cool to room temperature. The vNH region and the

vCO region are shown.
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Figure S10. FTIR-ATR spectra of lipoamino acid 3 in 2.6 w/v% in toluene solution (ATR) recorded from 0to 1 h
at room temperature. The vNH region (a) and the vCO region (b) are shown.
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Figure S11. Increase in intensity of characteristic IR bands associated with the gel formation at (3290 (orange),
1693 (grey) and 1651 (yellow) cm™ as a function of time. 2.6 w/v% 3 in toluene held at room temperature.
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Figure S12. XRD diffractograms of xerogels from lipoamino acids: 1 and 2 from hexane gels; 3 and 4
from toluene gels. (All gels were prepared at CGC).

COMPOUND Pos. [°26] Height [cts] d-spacing [A]
1. Fmoc-O'Bu-Cis 5.7921 276.37 15.2
i h 7.9787 235.35 111
In hexane 9.8863 217.03 8.9
11.7469 203.09 7.5
19.6256 859.11 4.5
22.0194 454.30 4.0
24.8500 143.42 3.5
2. Fmoc-O'Bu-Cis 5.8640 564.19 15.0
o h 7.6652 160.33 115
In hexane 9.6154 449.27 9.2
11.0213 1342.51 8.0
11.8769 1887.84 7.4
13.4607 1055.18 6.5
15.4309 457.12 5.7
18.1315 1604.68 4.8
18.4252 2145.43 4.8
19.4491 3222.15 45
21.1840 6405.38 42
22.7050 3118.04 3.9
32.4392 134.80 2.7
36.8439 118.76 2.4
3. Fmoc-OH-Cus 7.1011 250.78 124
i tol 16.4940 240.28 5.3
In toluene 18.6558 1581.75 4.7
19.7234 2119.41 45
22.0602 2902.67 4.0
25.8604 649.17 3.4
37.2761 95.71 2.4
4. Fmoc-OH-Cus 6.0324 967.71 146
. I 6.6278 751.25 13.3
In toluene 8.0820 202.15 10.9
9.5361 324.25 9.2
10.3283 376.78 8.5
13.1938 845.99 6.7




14.2830 270.24 6.2
15.3025 537.51 5.7
18.5337 835.77 4.7
19.5468 1426.98 4.5
21.2237 3626.88 4.1
22.1244 3390.39 4.0
23.1675 1703.51 3.8
25.5548 676.16 34
36.8617 76.55 24

Table S1. X-Ray powder diffraction data for xerogels of compunds 1-2 from hexane gels and 3-4 from
toluene gels.

Figure S13. Phase selective gelation and self-healing capability of petroleum ether gel formed by lipoamino
acid 1: a solution of the gelator in the organic solvent of choice and an aqueous phase were stirred in a water
bath at 45°C for 1 minute and then allowed to cool to room temperature. The phases separated and an
organogel formed at the top; a, b) gelation of petroleum ether by gelator 1 (0.4 w/v%) in a biphasic aqueous
mixture; c, d) Removal of the cyclohexane gel; e-g) Self-healing of petroleum ether gel formed from lipoamino
acid 1.

Figure S14. Gels malleability: gel in toluene formed by lipoamino acid 3 (1.3 w/v%) moulded into a “doughnut”
shape.



Figure S15. Self-healing capability of toluene gel formed by lipoamino acid 3 (1.3 w/v%); an orange dye was
added to one of the gels in order to distinguish them during the self-healing process

—— Before treatment

—— Treatment with hexane (Control A)

—— Treatment with 1 in hexane (0.7 w/v %)
—— Treatment with toluene (Control B)

—— Treatment with 3 in toluene (1.3 w/v %)
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Fig. S16 Removal of aromatic dye methyl orange from aqueous solution by phase selective gelation:
Top: aqueous solution of methyl orange [0.03 mM)] (a); aqueous solution of methyl orange after
treatment with compound 1 in hexane (b); after hexane extraction (c); after treatment with compound
3 in toluene (d); after toluene extraction (e); isolated gels: 1 in hexane (f), 3 in toluene (g) after
treatment. Bottom: UV-Vis absorption spectra of methyl orange aqueous solution before and after dye
removal by phase selective gelation. Solutions of compounds 1 and 3 were prepared at CGC.



Table S2 Determination of purification efficiency: UV-Vis absorbance (at 465 nm) of aqueous phase
and [methyl orange] before and after treatment.

Agqueous Phase Absgt;a)mce g\f:r:g)g] E (%)
' (mM)
Before treatment 1.36 0.030
h;;:;”zceg; ter;hA) 073 0.0161 36
boane 07wy 08 00033 89
oluene (eonralp) 012 00028 o1
Treatment with 3 in 0.10 0.0022 03

toluene (1.3 w/v%b)
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Figure S17. 'H NMR spectrum of lipoamino acid 1 (500 MHz, CDCls).
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Figure $18. 3C NMR spectrum of lipoamino acid 1 (125 MHz, CDCls).
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Figure $19. 'H NMR spectrum of lipoamino acid 2 (500 MHz, CDCls).
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Figure $20. 3C NMR spectrum of lipoamino acid 2 (125 MHz, CDCls).
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Figure $21. *H NMR spectrum of lipoamino acid 3 (500 MHz, CDCls).
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Figure $22. 3C NMR spectrum of lipoamino acid 3 (125 MHz, CDCls).
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Figure $23. 'H NMR spectrum of lipoamino acid 4 (500 MHz, CDCls).
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Figure S24. 3C NMR spectrum of lipoamino acid 4 (125 MHz, CDCls).
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