Supplementary information

Two fluorescent lead phosphonates for highly selective sensing of nitro aromatics (NACs), Fe^{3+} and MnO_4^{-} ions

Bo Xing, Huan-Yu Li, Yan-Yu Zhu, Zhou Zhao, Zhen-Gang Sun*, Dan Yang and Jing Li

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China

Table S1.	Selected	Bond	Distances	(Å)	and	Angles	(deg)	for 1	

Pb(1)-O(2)#1	2.290(4)	P(1)-O(3)	1.602(4)			
Pb(1)-O(5)#2	2.348(4)	P(1)-C(3)	1.812(6)			
Pb(1)=O(4)	2.446(4)	P(2)-O(4)	1.489(4)			
Pb(1)-O(1)#3	2.578(4)	P(2)-O(5)	1.493(4)			
P(1)-O(1)	1.500(4)	P(2)-O(6)	1.601(4)			
P(1)-O(2)	1.507(4)	P(2)-C(16)	1.806(5)			
O(2)#1-Pb(1)-O(5)#2	97.16(14)	O(4)-P(2)-O(5)	117.5(2)			
O(2)#1-Pb(1)-O(4)	84.17(14)	O(4)-P(2)-O(6)	112.6(2)			
O(5)#2-Pb(1)-O(4)	81.92(13)	O(5)-P(2)-O(6)	103.9(2)			
O(2)#1-Pb(1)-O(1)#3	86.08(13)	O(4)-P(2)-C(16)	108.6(3)			
O(5)#2-Pb(1)-O(1)#3	79.83(13)	O(5)-P(2)-C(16)	110.1(3)			
O(4)-Pb(1)-O(1)#3	158.04(13)	O(6)-P(2)-C(16)	103.2(2)			
O(1)-P(1)-O(2)	117.7(2)	C(2)-O(3)-P(1)	122.6(6)			
O(1)-P(1)-O(3)	106.0(2)	P(2)-O(4)-Pb(1)	146.1(2)			
O(2)-P(1)-O(3)	108.8(2)	C(17)-O(6)-P(2)	120.5(5)			
O(1)-P(1)-C(3)	109.2(2)	P(1)-O(2)-Pb(1)#4	128.5(2)			
O(2)-P(1)-C(3)	108.7(3)	P(1)-O(1)-Pb(1)#5	136.2(2)			
O(3)-P(1)-C(3)	105.8(3)	P(2)-O(5)-Pb(1)#6	139.6(2)			
Symmetry transformations used to generate equivalent atoms: $\#1 x - 1$, $y + 1$, z , $\#2 x - 1$, y ,						
z, #3 x - 2, y + 1, z, #4 x + 1, y - 1, z, #5 x + 2, y - 1, z, #6 x + 1, y, z.						

Table S2.	Selected Bond	Distances (Å)	and Angles	(deg) for 2

		8 (8)	
Pb(1)-O(4)#1	2.403(8)	Pb(3)-O(6) #4	2.517(5)
Pb(1)-O(11)	2.406(6)	Pb(3)-O(18)	2.731(6)
Pb(1)-O(1)	2.513(5)	P(1)-O(2)	1.478(6)
Pb(1)-O(17)#2	2.727(6)	P(1)-O(1)	1.515(6)
Pb(1)-O(10)	2.740(6)	P(1)-O(3)	1.603(7)
Pb(2)-O(2)	2.266(6)	P(2)-O(5)	1.484(8)
Pb(2)-O(16) #3	2.368(6)	P(2)-O(6)	1.499(5)
Pb(2)-O(16) #5	2.368(6)	P(2)-O(4)	1.572(8)
Pb(2)-O(7)	2.378(5)	P(3)-O(8)	1.495(6)
Pb(3)–O(8)	2.309(6)	P(3)-O(7)	1.518(5)
Pb(3)–O(19)	2.386(5)	P(3)-O(9)	1.594(6)
O(4)#1-Pb(1)-O(11)	84.9(3)	O(19)-Pb(3)-O(18)	50.89(17)
O(4)#1-Pb(1)-O(1)	110.2(2)	O(6)#4-Pb(3)-O(18)	123.19(17)
O(4)#1-Pb(1)-O(17)#2	146.0(2)	O(2)-P(1)-O(3)	111.4(4)
O(11)-Pb(1)-O(17)#2	78.6(2)	O(1)-P(1)-O(3)	105.6(4)
O(1)-Pb(1)-O(17)#2	95.11(19)	O(5)-P(2)-O(6)	114.6(4)
O(4)#1-Pb(1)-O(10)	69.7(2)	O(5)-P(2)-O(4)	97.3(5)
O(11)-Pb(1)-O(10)	49.60(18)	O(6)-P(2)-O(4)	110.6(4)
O(2)-Pb(2)-O(16)#3	79.2(2)	O(8)-P(3)-O(7)	114.7(3)
O(2)-Pb(2)-O(7)	80.3(2)	O(8)-P(3)-O(9)	113.1(4)
O(16)#3-Pb(2)-O(7)	86.6(2)	O(7)-P(3)-O(9)	105.4(4)
O(2)-Pb(2)-O(14)	90.1(3)	P(1)-O(1)-Pb(1)	134.3(3)
O(16)#3-Pb(2)-O(14)	158.7(2)	P(1)-O(2)-Pb(2)	146.2(4)
O(7)-Pb(2)-O(14)	73.31(19)	P(2)-O(4)-Pb(1)#1	121.2(5)
O(8)-Pb(3)-O(19)	89.7(2)	P(2)-O(6)-Pb(3)#4	136.1(3)
O(8)-Pb(3)-O(6)#4	79.26(19)	C(43)-O(16)-Pb(2)#5	108.2(5)
O(19)-Pb(3)-O(6)#4	78.61(18)	C(43)-O(17)-Pb(1)#2	110.9(5)

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 2, -z,

#2 - x + 2, - y + 1, - z, #3 x - 1, y, z, #4 - x + 1, - y + 2, - z + 1, #5 x + 1, y, z.

Compounds	Units	Elements	
		Fe	Mn
1	ppm	1.4826	0.8516
2	ppm	1.9319	0.0413

 Table S3. The ICP result of filtrate.

Fig. S1 The experimental powder XRD pattern and the simulated XRD pattern of compound 1.

Fig. S2 The experimental powder XRD pattern and the simulated XRD pattern of compound 2.

Fig. S3 (a) A 2D layer structure of compound 1 viewed in *ab*-plane; (b) the 30-atom windows in compound 1.

Fig. S4 The double layer structure of compound 2 viewed in *ac*-plane.

Fig. S5 The IR spectrum of compound 1.

Fig. S6 The IR spectrum of compound 2.

Fig. S7 The TG–DTG curves (10 K/min) of compound 1.

Fig. S8 The TG–DTG curves (10 K/min) of compound 2.

Fig. S9 The PXRD patterns for (a) 1 on heating from 25 to 240 °C and (b) 2 on heating from 25 to 220 °C.

Fig. S10 The solid-state emission spectra of compound 1 (a) and compound 2 (b) at room temperature.

Fig. S11 The emission spectra of (a, b) compound 1 in various solvents at room temperature.

Fig. S12 The emission spectra of (a, b) compound 2 in various solvents at room temperature.

Fig. S13 The room temperature emission spectra of compounds 1 and 2 in ethanol.

Fig. S14 The fluorescence properties of compound 1 suspension in the presence of various contents of nitromethane.

Fig. S15 The fluorescence properties of compound 1 suspension in the presence of various contents of mdinitrobenzen.

Fig. S16 The fluorescence properties of compound 1 suspension in the presence of various contents of onitrophenol.

Fig. S17 The fluorescence properties of compound 1 suspension in the presence of various contents of 2,6dinitrotoluene.

Fig. S18 The fluorescence properties of compound 1 suspension in the presence of various contents of nitrobenzene.

Fig. S19 The fluorescence properties of compound 1 suspension in the presence of various contents of 4nitrotoluene.

Fig. S20 The fluorescence properties of compound 1 suspension in the presence of various contents of pnitrophenol.

Fig. S21 The fluorescence properties of compound 2 suspension in the presence of various contents of 4nitrotoluene.

Fig. S22 The fluorescence properties of compound 2 suspension in the presence of various contents of 2,6dinitrotoluene.

Fig. S23 The fluorescence properties of compound 2 suspension in the presence of various contents of mdinitrobenzen.

Fig. S24 The fluorescence properties of compound 2 suspension in the presence of various contents of onitrophenol.

Fig. S25 The fluorescence properties of compound 2 suspension in the presence of various contents of nitromethane.

Fig. S26 The fluorescence properties of compound 2 suspension in the presence of various contents of nitrobenzene.

Fig. S27 The fluorescence properties of compound 2 suspension in the presence of various contents of pnitrophenol.

Fig. S28 The possible weak interaction mechanisms of o-nitrophenol.

Fig. S29 (a) The luminescence spectra of compound 1 in ethanol with different concentration of p-NP; (b) The linear correlation for the plot of $(I_0/I) - 1$ vs concentration of p-NP.

Fig. S30 (a) The luminescence spectra of compound 2 in ethanol with different concentration of p-NP; (b) The

linear correlation for the plot of $(I_0/I) - 1$ vs concentration of p-NP.

Fig. S31 Stern–Volmer plots for the fluorescence quenching of compound **1** (a) and **2** (b) (as a stable suspension in ethanol) upon gradual addition of various NACs.

Fig. S32 The reproducibility of the quenching efficiency of the ethanol suspension of compounds **1** (a) and **2** (b) towards 4 mM p-NP solution.

Fig. S33 The color change of the luminescent responses for sensing the different metal ions ($M = Zn^{2+}$, Al^{3+} , Pb^{2+} , Sr^{2+} , Li^+ , Mg^{2+} , Na^+ , Ba^{2+} , Ca^{2+} , Mn^{2+} , Cd^{2+} , Ni^{2+} , Co^{2+} , Fe^{2+} , Cr^{3+} , Cu^{2+} and Fe^{3+}) in aqueous solution for (a) **1**, (b) **2** by the ultraviolet light.

Fig. S34 (a) The luminescent intensity compound 1 treated with 1.0×10^{-3} M various cations for 12 h; (b) Percentage of fluorescence quenching by introducing different metal cations aqueous solution.

Fig. S35 (c) The luminescent spectra of compound 1 in the presence of Fe^{3+} ion with different concentrations (10–100 μ M); (d) Stern–Volmer plot of I₀/I versus the Fe³⁺ concentration.

Fig. S36 (c) The luminescent spectra of compound 2 in the presence of Fe^{3+} ion with different concentrations (10–100 μ M); (d) Stern–Volmer plot of I₀/I versus the Fe³⁺ concentration.

Fig. S37 (a) The luminescent intensity compound 1 treated with 1.0×10^{-3} M various cations for 12 h; (b) Percentage of fluorescence quenching by introducing different metal cations ethanol solution; (c) The luminescent spectra of compound 1 in the presence of Fe³⁺ ion with different concentrations (10–100 μ M). (d) Stern–Volmer plot of I₀/I versus the Fe³⁺ concentration.

Fig. S38 (a) The luminescent intensity compound 2 treated with 1.0×10^{-3} M various cations for 12 h; (b) Percentage of fluorescence quenching by introducing different metal cations ethanol solution; (c) The luminescent spectra of compound 2 in the presence of Fe³⁺ ion with different concentrations (10–100 μ M). (d) Stern–Volmer plot of I₀/I versus the Fe³⁺ concentration.

Fig. S39 The room temperature emission spectra of compounds 1 (a) and 2 (b) in ethanol and aqueous solution.

Fig. S40 (c) The luminescent spectra of compound 1 in the presence of MnO_4^- ion with different concentrations (10–100 μ M); (d) Stern–Volmer plot of I_0/I versus the MnO_4^- concentration.

Fig. S41 (c) The luminescent spectra of compound 2 in the presence of MnO_4^- ion with different concentrations (10–100 μ M); (d) Stern–Volmer plot of I_0/I versus the MnO_4^- concentration.

Fig. S42 (a) The luminescent intensity compound 1 treated with 1.0×10^{-3} M various anions for 12 h; (b) Percentage of fluorescence quenching by introducing different anions ethanol solution; (c) The luminescent spectra of compound 1 in the presence of MnO_4^- ion with different concentrations (10–100 μ M); (d) Stern– Volmer plot of I₀/I versus the MnO_4^- concentration.

Fig. S43 (a) The luminescent intensity compound 2 treated with 1.0×10^{-3} M various anions for 12 h; (b) Percentage of fluorescence quenching by introducing different anions ethanol solution; (c) The luminescent spectra of compound 2 in the presence of MnO_4^- ion with different concentrations (10–100 μ M); (d) Stern– Volmer plot of I₀/I versus the MnO_4^- concentration.

Fig. S44 (a), (c) The quenching and recovery test of compound 1 dispersed in aqueous solution in the presence of Fe^{3+} and MnO_4^- solution; (b) (d) the quenching and recovery test of compound 2 dispersed in aqueous solution in the Fe^{3+} and MnO_4^- solution. Red bar: emission of sample before sensing of Fe^{3+} and MnO_4^- ; Blue and green bars: emission of sample after sensing of Fe^{3+} and MnO_4^- respectively.

Fig. S45 The XRD patterns of compound 1 before and after treatment with p-NP (a), Fe^{3+} (b) and MnO_4^- (c) solutions.

Fig. S46 The XRD patterns of compound **2** before and after treatment with p-NP (a), Fe^{3+} (b) and MnO_4^{-} (c) solutions.

Fig. S47 UV-Vis absorption spectra of the Fe^{3+} (a), MnO_4^- (b) in aqueous solutions and compounds 1 and 2 (c).

Fig. S48 The solid sample color change of compound 1 immersed into the Fe^{3+} (a) and MnO_4^- (b) aqueous solutions.

Fig. S49 The solid sample color change of compound 2 soaked in the $Fe^{3+}(a)$ and $MnO_4^{-}(b)$ aqueous solutions.