Supporting Information of

pH-Sensitive Drug Release of Star-shaped Micelles with OEG Brush Corona

Sijie Zhao, Huiru Yang, Cai Zuo, Lu Sun, Liwei Ma*, and Hua Wei*

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China

Table S1-S3
Figure S1-S4

Polymer	Initiator (3/6s-OH)	Monomer (ε-CL)	Catalyst (Sn(Oct) ₂)
3s-PCL-OH	1 mmol	30 mmol	0.06 mmol
	(0.1094 g)	(3.4588 g)	(24.3 mg)
6s-PCL-OH	1 mmol	60 mmol	0.12 mmol
	(0.2825 g)	(6.9176 g)	(48.6 mg)

Table S1. The amount of each reagent used for the synthesis of 3s- and 6s-PCL-OH.

Table S2. The amount of each reagent used for the synthesis of 3s- and 6s-PCL-iBuBr.

Polymer	3/6s-PCL-OH	2-Bromoisobutyryl bromide	TEA	Solvent (DCM)
3s-PCL-iBuBr	0.39 mmol (1.000 g)	3.53 mmol (0.8290 g)	4.59 mmol (0.4696 mg)	8 ml
6s-PCL-iBuBr	0.17 mmol (1.000 g)	3.13 mmol (0.7339 g)	4.07 mmol (0.4157 mg)	12 ml

Table S3. The amount of each reagent used for the synthesis of 3s- and 6s-PCL-POEGMA.

Polymer	Initiator	Monomer	Catalyst	Ligand	Solvent
	(3/6s-PCL-iBuBr)	(OEGMA)	(CuBr)	(bpy)	(anisole)
3s-PCL-	0.0118 mmol	3.53 mmol	35µmol	71µmol	2.524 ml
POEGMA	(30 mg)	(1.0602 g)	(5.1 mg)	(11.3 mg)	5.554 IIII
6s-PCL-	0.0053 mmol	3.20 mmol	32µmol	64µmol	2.109 ml
POEGMA	(30 mg)	(0.9594 g)	(4.6 mg)	(10.2 mg)	5.198 IIII

Figure S1.The ¹H NMR spectra of (a) 3s-PCL-OH,(b) 3s-PCL-Br and (c) 3s-PCL-POEGMA.

Figure S2. The ¹H NMR spectra of (a) 6s-PCL-OH,(b) 6s-PCL-Br and (c) 6s-PCL-POEGMA.

Figure S3. GPC elution traces of 4s-PCL-POEGMA recorded at different time points in an acid-triggered degradation study.

Figure S4. ¹H NMR spectra of 4s-PCL-POEGMA recorded at different time points in an acid-triggered degradation study.