Supporting Information

Facile synthesis of flower-like hierarchical $NiCo_2O_4$ microspheres as high-performance cathode materials for Li-O₂ batteries

Liangjun Wang,^a Ting Zhu,^b Zhiyang Lyu,^c Jian Zhang,^c Lili Gong,^a Shuning Xiao,^d Jia Liu,^e Wenhao Dong,^c Xinhang Cui,^a Ghim Wei Ho^b and Wei Chen^{*a,c,f,g,h}

^aDepartment of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore. E-mail: phycw@nus.edu.sg; Fax: +65 6777 6126; Tel: +65 6516 2921

^bDepartment of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore

^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore

^dEducation Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, International Joint Lab of Resource Chemistry SHNU-NUS-PU, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.

^eDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

^fCentre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546, Singapore

^gNational University of Singapore (Suzhou) Research Institute, Suzhou 215123, China

^hSZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Shenzhen University, Shenzhen 518060, China

Fig. S1 SEM image of individual broken $NiCo_2O_4$ microspheres.

Fig. S2 SEM image that represents the elemental mapping.

Fig. S3 (a) Raman spectra of as-prepared NiCo₂O₄ microspheres.

Fig. S4 (a) SEM image and (b) TGA curves of NiCo₂O₄ microspheres precursor.

Fig. S5 (a) XRD pattern and (b) SEM image of as-prepared NiCo₂O₄ nanoneedles.

Fig. S6 EDX patterns of the as-prepared NiCo₂O₄ microspheres.

It should be noted that Si signal is attributed to that the used Si substrate and Pt signal comes from Pt sputtering to get a clear FESEM images.

Cathode material	Discharge/charge Voltage gap (V)	Ref.
Mesoporous NiCo ₂ O ₄ nanoflakes	~1.3	1
Ordered mesoporous NiCo ₂ O ₄	~1.15	2
Hierarchical NiCo ₂ O ₄ nanorods	~1.1	3
Hierarchical porous NiCo ₂ O ₄ @Ni	Discharge: sloping from 2.6 to 2.3 V	4
	Charge: sloping from 3.5 to 4.1 V	
Urchin-like spinel NiCo ₂ O ₄	~1.05	5
NiCo ₂ O ₄ nanoneedles	1.25	Our
NiCo ₂ O ₄ microspheres	0.86	work

Table S1 A summary of previous results about $NiCo_2O_4$ based cathode for $Li-O_2$ batteries.

Fig. S7 First full discharge/charge profiles of $Li-O_2$ batteries with $NiCo_2O_4$ nanoneedles cathodes at a current density of 0.08 mA/cm².

Fig. S8 Cycling performance of $Li-O_2$ batteries with (a) $NiCo_2O_4$ nanoneedles and (b)bare VX-72 carbon cathode at 500 mA h/g capacity limit.

Fig. S9 SEM image of NiCo₂O₄ microspheres electrode after 60 cycles.

References

- L. Zhang, S. Zhang, K. Zhang, G. Xu, X. He, S. Dong, Z. Liu, C. Huang, L. Gu and G. Cui, *Chem. Commun.*, 2013, 49, 3540-3542.
- Y. Li, L. Zou, J. Li, K. Guo, X. Dong, X. Li, X. Xue, H. Zhang and H. Yang, *Electrochim. Acta*, 2014, 129, 14-20.
- 3. B. Sun, J. Zhang, P. Munroe, H.-J. Ahn and G. Wang, *Electrochem. Commun.*, 2013, **31**, 88-91.
- 4. X. Lin, J. Su, L. Li and A. Yu, *Electrochim. Acta*, 2015, **168**, 292-299.
- 5. H. S. Jadhav, R. S. Kalubarme, J. W. Roh, K. N. Jung, K. H. Shin, C. N. Park and C. J. Park, *J. Electrochem. Soc.*, 2014, **161**, A2188-A2196.