Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information for:

The role of exchange-correlation functional on the description of multiferroic properties using Density Functional Theory: The $ATiO_3$ (A = Mn, Fe, Ni) case study

Renan Augusto Pontes Ribeiro^a, Sergio Ricardo de Lazaro^a, Carlo Gatti^b

^aDepartment of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil

^bCNR-ISTM Istituto di Scienze e Tecnologie Molecolari, Via Golgi 18, 20133 Milano, Italy

Table S1: Calculated lattice parameters (Å) and unit cell volume (Å³) for the $ATiO_3$ (A = Mn, Fe, Ni) materials as obtained from different exchange-correlation functionals. Experimental and DFT+U results are included for comparison.

		0		<u>.</u>			-		-		
		LDA	PBESol	PBE0	PBE0+D	B3LYP	B3LYP+D	DFT+U		Experimental	
	а	5.120	5.173	5.209	5.203	5.242	5.238	5.245^{a}	5.127^{b}	5.205^{c}	
$MnTiO_3$	с	13.499	13.624	13.632	13.452	13.866	13.536	13.985	13.63	13.700	
	\mathbf{V}	306.434	315.779	320.371	315.394	330.025	320.426	333.18	310.28	321.400	
	a	5.009	5.061	5.156	5.148	5.191	5.176	5.050^{b}		5.127^{d}	
$FeTiO_3$	с	13.617	13.734	13.612	13.458	13.801	13.534	13.	520	13.723	
	\mathbf{V}	295.830	304.632	313.394	308.902	322.058	313.952	298	.600	312.420	
	a	4.936	4.992	5.039	5.030	5.077	5.061	4.985^{e}	4.930^{b}	5.021^{f}	
$NiTiO_3$	с	13.569	13.692	13.710	13.564	13.869	13.618	13.778	13.650	13.840	
	V	286.295	295.484	301.423	297.210	309.614	302.070	296.550	287.310	302.167	

^a Reference [1].

^b Reference [2].

^c Reference [3].

^d Reference [4]. ^e Reference [5].

^f Reference [6].

			A-O		Ti-O			
		Short	Long	$\Delta \ge 10^{-4}$	Short	Long	$\Delta\ge 10^{-4}$	
	B3LYP	2.132	2.300	14.369	1.876	2.142	43.827	
	B3LYP+D	2.093	2.352	33.951	1.873	2.099	32.374	
	PBE0	2.116	2.299	17.181	1.873	2.093	30.771	
$MnTiO_3$	PBE0+D	2.095	2.329	27.977	1.870	2.072	26.258	
	PBESol	2.072	2.275	21.808	1.884	2.088	26.378	
	LDA	2.042	2.243	22.003	1.876	2.065	22.999	
	Experimental ^a	2.118	2.289	15.056	1.866	2.110	37.661	
	B3LYP	2.103	2.209	6.043	1.873	2.148	46.773	
	B3LYP+D	2.062	2.240	17.120	1.864	2.126	43.118	
	PBE0	2.087	2.196	6.477	1.866	2.111	37.951	
$FeTiO_3$	PBE0+D	2.065	2.212	11.813	1.861	2.099	36.121	
	PBESol	2.019	2.150	9.874	1.896	2.084	22.313	
	LDA	1.994	2.124	9.966	1.885	2.064	20.546	
	Experimental ^b	2.121	2.159	0.788	1.832	2.133	57.630	
	B3LYP	2.059	2.120	2.131	1.865	2.150	50.387	
	B3LYP+D	2.027	2.123	5.351	1.853	2.135	50.002	
	PBE0	2.040	2.102	2.241	1.857	2.119	43.422	
$NiTiO_3$	PBE0+D	2.023	2.103	3.759	1.850	2.110	43.108	
	PBESol	2.006	2.081	3.368	1.869	2.099	33.598	
	LDA	1.976	2.057	4.034	1.860	2.073	29.330	
	Experimental ^c	2.052		-	1.945 -		-	

Table S2: Theoretical short and long M-O (M = Mn, Fe, Ni, Ti) bond distances and octahedral distortion (Δ) for ATiO₃ (A = Mn, Fe, Ni) materials as function of the exchange-correlation functionals.

^a Reference [7]. ^b Reference [8]. ^c Reference [9].

Table S3: Theoretical results for overlap population (in m|e|) of the A-O bonds (A = Mn, Fe, Ni) as function of exchangecorrelation functionals.

	short			long			
	Mn	Fe	Ni	Mn	Fe	Ni	
B3LYP	-9.0	5.0	8.0	0.0	7.0	9.0	
B3LYP+D	-13.0	2.0	6.0	0.0	6.0	9.0	
PBE0	-14.0	1.0	6.0	-2.0	4.0	7.0	
PBE0+D	-17.0	-1.0	4.0	-2.0	4.0	7.0	
PBESol	-10.0	12.0	14.0	2.0	13.0	13.0	
LDA	-12.0	11.0	13.0	1.0	12.0	12.0	

Figure S1: Band Structure profiles for MnTiO₃ (left panel), FeTiO₃ (middle panel), and NiTiO₃ (right panel) materials in G-type antiferromagnetic ground-state obtained from different exchange-correlation functionals. (a-c) B3LYP, (d-f) B3LYP+D, (g-i) PBE0, (j-l) PBE0+D, (m-o) PBES0l, (p-r) LDA. In all cases the Fermi level was set to zero.

- [1] X. Hao, Y. Xu, C. Franchini and F. Gao, physica status solidi (b), 2015, 252, 626–634.
- [2] C. J. Fennie, *Phys. Rev. Lett.*, 2008, **100**, 167203.
- [3] J. Ko and C. T. Prewitt, Physics and Chemistry of Minerals, 1988, 15, 355-362.
- [4] K. Leinenweber, W. Utsumi, Y. Tsuchida, T. Yagi and K. Kurita, *Physics and Chemistry of Minerals*, 1991, 18, 244–250.
 [5] C. Xin, Y. Wang, Y. Sui, Y. Wang, X. Wang, K. Zhao, Z. Liu, B. Li and X. Liu, *Journal of Alloys and Compounds*, 2014, **613**, 401 – 406.
- [6] T. Varga, T. C. Droubay, M. E. Bowden, R. J. Colby, S. Manandhar, V. Shutthanandan, D. Hu, B. C. Kabius, E. Apra, W. A. Shelton and S. A. Chambers, Journal of Vacuum Science & Technology B, 2013, 31, 030603.
- [7] A. Aimi, T. Katsumata, D. Mori, D. Fu, M. Itoh, T. Kymen, K. ichi Hiraki, T. Takahashi and Y. Inaguma, Inorganic Chemistry, 2011, **50**, 6392–6398.
- [8] T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke, P. Schiffer, V. Gopalan and J. F. Mitchell, Phys. Rev. Lett., 2009, 103, 047601.
- [9] T. Varga, T. C. Droubay, M. E. Bowden, P. Nachimuthu, V. Shutthanandan, T. B. Bolin, W. A. Shelton and S. A. Chambers, Thin Solid Films, 2012, 520, 5534 - 5541.