Electronic Supplementary Information

Preparation and application of surface activated Si-MCM-41 and SBA-16 as reusable

supports for reduction of cyclic ketones with preferential stereoselectivity

Haribandhu Chaudhuri, Subhajit Dash, and Ashis Sarkar*

Organic Materials Research Laboratory, Department of Applied Chemistry, Indian School of

Mines, Dhanbad, Jharkhand-826004, India.

*Corresponding author: Ashis Sarkar, E-mail: <u>a_sarkar_99@yahoo.com</u>, Tel. +91 9430335255, Fax: +91 326-2307772.

Table of contents

HC-N1

Fig. S1: ¹H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S2: ¹H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S3: ¹H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S4: ¹H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.

Fig. S5: ¹H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.

Fig. S6: ¹H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.

Fig. S7: ¹H NMR spectrum of reduction product of 2-methylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S8: ¹H NMR spectrum of reduction product of 2-methylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S9: ¹H NMR spectrum of reduction product of 2-methylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S10: ¹H NMR spectrum of reduction product of 2-methylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.

Fig. S11: ¹H NMR spectrum of reduction product of 2-methylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.

Fig. S12: ¹H NMR spectrum of reduction product of 2-methylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.

Fig. S13: ¹H NMR spectrum of reduction product of 3-methylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.

HC-S-2

Fig. S14: ¹H NMR spectrum of reduction product of 3-methylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S15: ¹H NMR spectrum of reduction product of 3-methylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.

HC-S-4

Fig. S16: ¹H NMR spectrum of reduction product of 3-methylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.

Fig. S17: ¹H NMR spectrum of reduction product of 3-methylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.

Fig. S18: ¹H NMR spectrum of reduction product of 3-methylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.

Fig. S19: ¹H NMR spectrum of reduction product of 4-methylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S20: ¹H NMR spectrum of reduction product of 4-methylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S21: ¹H NMR spectrum of reduction product of 4-methylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S22: ¹H NMR spectrum of reduction product of 4-methylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.

Fig. S23: ¹H NMR spectrum of reduction product of 4-methylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.

Fig. S24: ¹H NMR spectrum of reduction product of 4-methylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.

Fig. S25: ¹H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S26: ¹H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S27: ¹H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.

Fig. S28: ¹H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.

Fig. S29: ¹H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.

Fig. S30: ¹H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.