Rational design, synthesis and 2D-QSAR studies of antiproliferative tropane-based compounds

Nasser S. M. Ismail,^{*a,b} Riham F. George,^c Rabah A. T. Serya,^b Fady N. Baselious,^d May El-Manawaty,^e ElSayed M. Shalaby,^f Adel S. Girgis^{*g}

^a Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo 12311, Egypt.

^b Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.

^c Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

^d Research and Development Department, Global Napi Pharmaceuticals, 6th October City, Giza, Egypt.

^e Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt.

^f X-Ray Crystallography Lab., Physics Division, National Research Centre, Dokki, Giza 12622, Egypt.

^g Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.

* Corresponding authors, E-mail: <u>saadnasser2003@yahoo.com</u> (Nasser S. M. Ismail), <u>girgisas10@yahoo.com</u> (Adel S. Girgis).

Supporting information

Table titles

Table S1. Experimental and optimized intramolecular geometrical parameters (bondlengths, Å) of compound 14a.

 Table S2. Experimental and optimized intramolecular geometrical parameters (bond angles, °) of compound 14a.

Table S3. Molecular descriptor values of the BMLR-QSAR model for the antitumor tropane containing-compounds (**12a–f**, **14a–i,k–o,q–s** and **16a,b**) according to the BMLR-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S4. Descriptor of the BMLR-QSAR model for the subset group (A+B) against MCF7 (beast) carcinoma cell line.

Table S5. Observed and estimated/predicted activity values for the subset group (A+B) antitumor active agents according to the (A+B)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S6. Observed and estimated/predicted activity values for the subset group (C, as an external test set) according to the (A+B)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S7. Descriptor of the BMLR-QSAR model for the subset group (A+C) against MCF7 (beast) carcinoma cell line.

Table S8. Observed and estimated/predicted activity values for the subset group (A+C) antitumor active agents according to the (A+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S9. Observed and estimated/predicted activity values for the subset group (B, as an external test set) according to the (A+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S10. Descriptor of the BMLR-QSAR model for the subset group (B+C) against MCF7 (beast) carcinoma cell line.

Table S11. Observed and estimated/predicted activity values for the subset group (B+C) antitumor active agents according to the (B+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S12. Observed and estimated/predicted activity values for the subset group (A, as an external test set) according to the (B+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

 Table S13. Crystal data and structure refinement parameters of compound 14a.

Figure captions

Fig. S1. IR spectrum of compound 12f (KBr pellet).

Fig. S2. ¹H-NMR spectrum of compound **12f** in CDCl₃.

Fig. S3. ¹³C-NMR spectrum of compound **12f** in CDCl₃.

Fig. S4. IR spectrum of compound 14a (KBr pellet).

Fig. S5. ¹H-NMR spectrum of compound 14a in CDCl₃.

Fig. S6. ¹H, ¹H-COSY spectrum of compound 14a in CDCl₃.

Fig. S7. ¹³C-NMR spectrum of compound 14a in CDCl₃.

Fig. S8. 1 H, 13 C-Heteronuclear Single Quantum Coherence (HSQC) spectrum of compound **14a** in CDCl₃.

Fig. S9. IR spectrum of compound 14b (KBr pellet).

Fig. S10. ¹H-NMR spectrum of compound 14b in CDCl₃.

Fig. S11. ¹³C-NMR spectrum of compound 14b in CDCl₃.

Fig. S12. IR spectrum of compound 14c (KBr pellet).

Fig. S13. ¹H-NMR spectrum of compound 14c in CDCl₃.

Fig. S14. ¹³C-NMR spectrum of compound 14c in CDCl₃.

Fig. S15. IR spectrum of compound 14d (KBr pellet).

Fig. S16. ¹H-NMR spectrum of compound **14d** in CDCl₃.

Fig. S17. ¹³C-NMR spectrum of compound 14d in CDCl₃.

Fig. S18. IR spectrum of compound 14e (KBr pellet).

Fig. S19. ¹H-NMR spectrum of compound 14e in CDCl₃.

Fig. S20. ¹³C-NMR spectrum of compound 14e in CDCl₃.

Fig. S21. IR spectrum of compound 14f (KBr pellet).

Fig. S22. ¹H-NMR spectrum of compound 14f in CDCl₃.

Fig. S23. ¹³C-NMR spectrum of compound 14f in CDCl₃.

Fig. S24. IR spectrum of compound 14g (KBr pellet).

Fig. S25. ¹H-NMR spectrum of compound 14g in CDCl₃.

Fig. S26. ¹³C-NMR spectrum of compound 14g in CDCl₃.

Fig. S27. IR spectrum of compound 14h (KBr pellet).

Fig. S28. ¹H-NMR spectrum of compound 14h in CDCl₃.

Fig. S29. ¹³C-NMR spectrum of compound 14h in CDCl₃.

Fig. S30. IR spectrum of compound 14i (KBr pellet).

Fig. S31. ¹H-NMR spectrum of compound **14i** in CDCl₃.

Fig. S32. ¹³C-NMR spectrum of compound 14i in CDCl₃.

Fig. S33. IR spectrum of compound 14j (KBr pellet).

Fig. S34. ¹H-NMR spectrum of compound 14j in CDCl₃.

Fig. S35. ¹³C-NMR spectrum of compound 14j in CDCl₃. Fig. S36. IR spectrum of compound 14k (KBr pellet). **Fig. S37.** ¹H-NMR spectrum of compound **14k** in CDCl₃. Fig. S38. ¹³C-NMR spectrum of compound 14k in CDCl₃. Fig. S39. IR spectrum of compound 14l (KBr pellet). Fig. S40. ¹H-NMR spectrum of compound 14l in CDCl₃. Fig. S41. ¹³C-NMR spectrum of compound 14l in CDCl₃. Fig. S42. IR spectrum of compound 14m (KBr pellet). Fig. S43. ¹H-NMR spectrum of compound 14m in CDCl₃. Fig. S44. ¹³C-NMR spectrum of compound 14m in CDCl₃. Fig. S45. IR spectrum of compound 14n (KBr pellet). **Fig. S46.** ¹H-NMR spectrum of compound **14n** in CDCl₃. Fig. S47. ¹³C-NMR spectrum of compound 14n in CDCl₃. Fig. S48. IR spectrum of compound 140 (KBr pellet). **Fig. S49.** ¹H-NMR spectrum of compound **140** in CDCl₃. Fig. S50. ¹³C-NMR spectrum of compound 140 in CDCl₃. Fig. S51. IR spectrum of compound 14p (KBr pellet). Fig. S52. ¹H-NMR spectrum of compound 14p in CDCl₃. Fig. S53. ¹³C-NMR spectrum of compound 14p in CDCl₃. Fig. S54. IR spectrum of compound 14q (KBr pellet). Fig. S55. ¹H-NMR spectrum of compound **14q** in CDCl₃. Fig. S56. ¹³C-NMR spectrum of compound 14q in CDCl₃. Fig. S57. IR spectrum of compound 14r (KBr pellet). Fig. S58. ¹H-NMR spectrum of compound 14r in CDCl₃. Fig. S59. ¹³C-NMR spectrum of compound 14r in CDCl₃. Fig. S60. IR spectrum of compound 14s (KBr pellet). Fig. S61. ¹H-NMR spectrum of compound 14s in CDCl₃. Fig. S62. ¹³C-NMR spectrum of compound 14s in CDCl₃. Fig. S63. IR spectrum of compound 16a (KBr pellet). Fig. S64. ¹H-NMR spectrum of compound 16a in CDCl₃. Fig. S65. ¹³C-NMR spectrum of compound 16a in CDCl₃.

Fig. S66. ¹H-NMR spectrum of compound 16b in CDCl₃.

Fig. S67. ¹H-NMR spectrum of compound 16b in CDCl₃.

Fig. S68. ¹³C-NMR spectrum of compound 16b in CDCl₃.

Fig. S69. A projection of the optimized structure of compound 14a by semi-empirical AM1.

Fig. S70. A projection of the optimized structure of compound 14a by semi-empirical PM3.

Fig. S71. A projection of the optimized structure of compound **14a** by DFT/B3LYP with 6-31G(d,p) level of theory.

Fig. S72. Overlay diagram of **14a**; red (X-ray structure), green (AM1), blue (PM3) and yellow (DFT).

Fig. S73. Dose-response curve of the tropane containing-compounds against HepG2 (liver cancer) cell line.

Fig. S74. Dose-response curve of the tropane containing-compounds against MCF7 (breast cancer) cell line.

Fig. S75. BMLR-QSAR model plot of correlations representing the observed *versus* predicted $\log(IC_{50}, \mu M)$ values for the subset group (A+B) against MCF7 (beast) carcinoma cell line.

Fig. S76. BMLR-QSAR model plot of correlations representing the observed *versus* predicted $\log(IC_{50}, \mu M)$ values for the subset group (A+C) against MCF7 (beast) carcinoma cell line.

Fig. S77. BMLR-QSAR model plot of correlations representing the observed *versus* predicted $log(IC_{50}, \mu M)$ values for the subset group (B+C) against MCF7 (beast) carcinoma cell line (compound **16a** is an outlier).

-				
Geometric parameters	Exp. X-ray	AM1	PM3	DFT
N1—N2	1.409	1.360	1.415	1.388
N1—C17	1.489	1.509	1.534	1.488
N1—C26	1.410	1.425	1.452	1.408
N2—C3	1.289	1.320	1.308	1.290
C3—C4	1.466	1.463	1.467	1.463
C3—C16	1.499	1.535	1.518	1.511
C4—C5	1.348	1.341	1.342	1.352
C4—C12	1.530	1.519	1.513	1.527
C5—C6	1.465	1.456	1.460	1.469
C6—C7	1.385	1.402	1.397	1.409
C6—C11	1.394	1.403	1.402	1.409
С7—С8	1.385	1.394	1.390	1.394
C8—C9	1.380	1.394	1.390	1.396
C9—C10	1.368	1.395	1.392	1.397
C10—C11	1.394	1.393	1.388	1.392
C12—N13	1.491	1.487	1.508	1.483
C12—C25	1.539	1.559	1.5490	1.564
N13—C14	1.474	1.442	1.472	1.461
N13—C15	1.479	1.490	1.509	1.479
C15—C16	1.527	1.535	1.536	1.541
C15—C24	1.527	1.554	1.541	1.559
C16—C17	1.534	1.556	1.544	1.548
C17—C18	1.513	1.498	1.498	1.518
C18—C19	1.372	1.400	1.397	1.400
C18—C23	1.380	1.400	1.396	1.401
C19—C20	1.386	1.394	1.390	1.396
C20—C21	1.363	1.395	1.391	1.395
C21—C22	1.355	1.395	1.391	1.397

Table S1. Experimental and optimized intramolecular geometrical parameters (bond lengths, Å) of compound 14a.

C22—C23	1.407	1.394	1.390	1.394
C24—C25	1.536	1.531	1.534	1.555
C26—C27	1.382	1.412	1.399	1.408
C26—C31	1.380	1.414	1.401	1.405
C27—C28	1.387	1.392	1.390	1.390
C28—C29	1.383	1.393	1.390	1.398
C29—C30	1.385	1.394	1.391	1.393
C30—C31	1.381	1.390	1.389	1.396
RMSE		0.0213	0.0182	0.0178
Maximum difference		0.049	0.045	0.042

Geometric parameters	Exp. X-ray	AM1	PM3	DFT
N2—N1—C17	110.0	111.8	108.8	111.2
N2—N1—C26	115.6	120.4	116.6	116.8
C17—N1—C26	123.0	119.2	120.3	123.0
N1—N2—C3	107.8	110.3	110.7	109.0
N2—C3—C4	124.0	128.0	126.6	125.9
N2—C3—C16	113.7	113.1	113.2	113.3
C4—C3—C16	122.1	118.0	119.7	120.7
C3—C4—C5	120.9	123.0	121.7	121.7
C3—C4—C12	111.2	111.6	111.3	111.6
C5—C4—C12	127.9	125.4	127.0	126.7
C4—C5—C6	129.6	126.3	128.0	129.4
C5—C6—C7	123.0	121.5	123.2	123.8
C5—C6—C11	119.3	119.3	117.8	118.4
C7—C6—C11	117.6	119.2	119.0	117.7
C6—C7—C8	121.5	120.3	120.5	121.0
С7—С8—С9	119.7	120.2	120.2	120.4
C8—C9—C10	120.2	119.8	119.8	119.4
C9—C10—C11	120.0	120.2	120.2	120.2
C6-C11-C10	120.9	120.3	120.4	121.3
C4—C12—N13	108.3	109.2	106.7	108.8
C4—C12—C25	110.0	107.5	109.8	110.6
N13-C12-C25	105.0	105.9	105.1	104.7
C12—N13—C14	110.5	113.5	114.7	113.3
C12—N13—C15	101.6	101.5	102.1	102.8
C14—N13—C15	112.0	113.7	114.9	114.0
N13-C15-C16	104.4	105.1	104.3	103.5
N13—C15—C24	106.2	106.3	105.2	105.7
C16—C15—C24	114.2	111.2	111.8	113.9

Table S2. Experimental and optimized intramolecular geometrical parameters (bond angles, $^{\circ}$) of compound 14a.

C15—C16—C3	109.1	108.7	110.5	110.3
C15—C16—C17	120.7	118.1	116.3	121.8
C3—C16—C17	101.7	101.0	102.2	101.5
C16—C17—N1	100.3	103.3	103.4	100.8
C16—C17—C18	114.0	110.8	114.1	112.5
N1—C17—C18	113.3	116.7	115.7	114.8
C17—C18—C19	119.8	119.2	119.2	119.6
C17—C18—C23	121.0	121.3	121.5	121.4
C19—C18—C23	119.1	119.4	119.3	118.9
C18—C19—C20	120.7	120.2	120.2	120.7
C19—C20—C21	120.1	120.1	120.2	120.0
C20—C21—C22	120.2	119.8	119.9	119.6
C21—C22—C23	120.3	120.2	120.1	120.3
C22—C23—C18	119.5	120.2	120.4	120.4
C15—C24—C25	105.0	104.7	105.1	104.3
C12—C25—C24	103.8	104.1	105.4	103.8
N1-C26-C27	119.2	122.6	122.7	120.0
N1-C26-C31	121.3	118.7	117.3	121.0
C27—C26—C31	119.4	118.6	119.9	118.9
C26—C27—C28	119.7	120.1	119.6	120.1
C27—C28—C29	121.6	120.8	120.5	121.0
C28—C29—C30	117.7	119.4	119.9	118.8
C29—C30—C31	121.3	120.7	120.3	121.0
C30—C31—C26	120.2	120.3	119.8	120.1
RMSE		1.97	1.72	0.91
Maximum difference		4.8	4.4	2.8

Entry Compd.	Compd	Descriptors ^a					
	D_1	D_2	D_3	D_4	D_5		
1	12a	39.18	1.85189	2	39.4894	2.34086	
2	12b	34.4	1.85545	2	39.4815	2.70299	
3	12c	41.2	1.86092	2	39.49	2.46748	
4	12d	38.16	1.85388	2	39.4906	1.56057	
5	12e	38.62	1.85333	2	39.4905	1.9113	
6	12f	37.54	1.84663	4	39.4894	2.34086	
7	14a	66.08	1.85358	3	39.405	6.71167	
8	14b	64.26	1.85255	3	39.389	5.37492	
9	14c	65.92	1.83136	3	39.3765	5.32813	
10	14d	65.1	1.8352	3	39.356	3.80648	
11	14e	61.38	1.854	3	39.2777	5.22805	
12	14f	63.82	1.85281	3	39.2701	5.70906	
13	14g	75.52	1.85364	3	39.394	4.68172	
14	14h	65.28	1.85022	3	39.3038	5.71779	
15	14i	70.86	1.83777	3	39.364	2.84473	
16	14k	63.72	1.85216	3	39.2734	5.70906	
17	14l	69.26	1.85254	3	39.2764	3.81898	
18	14m	63.76	1.8315	3	39.3917	5.05171	
19	14n	65.38	1.85365	3	39.3931	5.43618	
20	14o	62.88	1.84766	3	39.2991	6.29262	
21	14q	69.44	1.84469	3	39.2733	5.71525	
22	14r	73.66	1.85145	3	39.403	6.94013	
23	14s	58.88	1.8066	5	39.3428	3.91686	
24	16a	52.16	1.85135	4	39.287	5.48952	
25	16b	58.56	1.85464	4	39.3782	3.99749	

Table S3. Molecular descriptor values of the BMLR-QSAR model for the antitumortropane containing-compounds (12a–f, 14a–i,k–o,q–s and 16a,b) according to theBMLR-QSAR model due to MCF7 (breast) cancinoma cell line.

^a D_1 = Shadow plane YZ, D_2 = Max. bond order for atom C, D_3 = Min. (#HA, #HD) (Zefirov PC), D_4 = Min. n-n repulsion for bond H-C, D_5 = Square root of surface area for atom N.

$N = 17, n = 3, R^2 = 0.711, R^2 \text{cvOO} = 0.534, R^2 \text{cvMO} = 0.560, F = 10.637, s^2 = 0.048$				
ID	Coefficient	S	t	Descriptor
0	-10.452	3.874	2.698	Intercept
D_1	0.31127	0.060	5.189	Tot. dipole of the molecule
D_2	12.0309	4.304	2.795	Max. PI-PI bond order
D_3	-0.191204	0.042	-4.544	RNCS Relative negative charged SA
				(SAMNEG*RNCG) (MOPAC PC)
$\log (IC_{50}) = -10.452 + (0.31127 \text{ x } D_1) + (12.0309 \text{ x } D_2) - (0.191204 \text{ x } D_3)$				

Table S4. Descriptor of the BMLR-QSAR model for the subset group (A+B) against MCF7 (beast) carcinoma cell line.

Entry	Compd.	Observed IC ₅₀ , μ M	Estimated IC ₅₀ , μ M	Error ^a
1	12a	3.4	3.9	-0.5
2	12c	4.4	4.6	-0.2
3	12d	8.3	7.2	1.1
4	12e	9.0	7.9	1.1
5	12f	14.9	13.7	1.2
6	14a	15	14.3	0.7
7	14b	11.3	9.6	1.7
8	14c	6.1	6.1	0.0
9	14d	9.9	10.6	-0.7
10	14e	3.9	5.9	-2.0
11	14g	47.6	31.8	15.8
12	14k	5.4	6.2	-0.8
13	14l	40.4	47.4	-7.0
14	140	5	4.2	0.8
15	14s	6.4	7.0	-0.6
16	16a	5.5	4.9	0.6
17	16b	44.2	55.7	-11.5

Table S5. Observed and estimated/predicted activity values for the subset group (A+B) antitumor active agents according to the (A+B)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S6. Observed and estimated/predicted activity values for the subset group (C, as an external test set) according to the (A+B)-QSAR model due to MCF7 (breast) cancinoma cell line.

Entry	Compd.	Observed IC ₅₀ , μ M	Estimated IC ₅₀ , μ M	Error ^a
1	12b	4.0	0.5	3.5
2	14f	9.3	7.6	1.7
3	14h	5.9	7.9	-2.0
4	14i	44.4	32.0	12.4
5	14m	6.8	85.5	-78.7
6	14n	21.8	8.4	13.4
7	14q	5.1	18.2	-13.1
8	14r	12.1	20.2	-8.1

$N = 17, n = 3, R^2 = 0.768, R^2 \text{cvOO} = 0.606, R^2 \text{cvMO} = 0.663, F = 14.370, s^2 = 0.039$				
ID	Coefficient	S	t	Descriptor
0	-99.318	31.049	-3.199	Intercept
D_1	3.94371	0.716	5.508	Max. resonance energy for bond C-C
D_2	6.21007	2.093	2.967	Min. resonance energy for bond H-C
D_3	-6.2108	1.291	-4.811	Min. atomic state energy for atom H
$\log (IC_{50}) = -99.318 + (3.94371 \text{ x } D_1) + (6.21007 \text{ x } D_2) - (6.2108 \text{ x } D_3)$				

Table S7. Descriptor of the BMLR-QSAR model for the subset group (A+C) against MCF7 (beast) carcinoma cell line.

Entry	Compd.	Observed IC ₅₀ , µM	Estimated IC ₅₀ , μ M	Error ^a
1	12a	3.4	3.7	-0.3
2	12b	4.0	3.6	0.4
3	12c	4.4	4.7	-0.3
4	12d	8.3	7.7	0.6
5	12f	14.9	15.4	-0.5
6	14c	6.1	4.6	1.5
7	14d	9.9	11.8	-1.9
8	14f	9.3	8.7	0.6
9	14g	47.6	47.7	-0.1
10	14h	5.9	6.9	-1.0
11	14i	44.4	52.2	-7.8
12	14k	5.4	6.4	-1.0
13	14l	40.4	26.9	13.5
14	14m	6.8	6.6	0.2
15	14n	21.8	23.6	-1.8
16	14q	5.1	5.8	-0.7
17	14r	12.1	10.9	1.2

Table S8. Observed and estimated/predicted activity values for the subset group (A+C) antitumor active agents according to the (A+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Table S9. Observed and estimated/predicted activity values for the subset group (B, as an external test set) according to the (A+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Entry	Compd.	Observed IC ₅₀ , μ M	Estimated IC ₅₀ , μ M	Error ^a
1	12e	9.0	6.2	2.8
2	14a	15.0	8.1	6.9
3	14b	11.3	22.8	-11.5
4	14e	3.9	9.0	-5.1
5	140	5.0	4.7	0.3
6	14s	6.4	28.9	-22.5
7	16a	5.5	0.0	5.5
8	16b	44.2	0.3	43.9

$N = 16, n = 3, R^2 = 0.790, R^2 \text{cvOO} = 0.654, R^2 \text{cvMO} = 0.664, F = 15.068, s^2 = 0.029$				
ID	Coefficient	S	t	Descriptor
0	-109.922	21.329	-5.154	Intercept
D_1	9.2227	1.918	4.808	Min. resonance energy for bond H-C
D_2	119.521	27.531	4.341	Max. partial charge (Zefirov) for
				atoms for atom H
D_3	11.7365	3.601	3.260	Max. PI-PI bond order
$\log (IC_{50}) = -109.922 + (9.2227 \text{ x } D_1) + (119.521 \text{ x } D_2) - (11.7365 \text{ x } D_3)$				

Table S10. Descriptor of the BMLR-QSAR model for the subset group (B+C) against MCF7 (beast) carcinoma cell line.

Entry	Compd.	Observed IC ₅₀ , μ M	Estimated IC ₅₀ , µM	Error ^a
1	12b	4.0	4.4	-0.4
2	12e	9.0	8.5	0.5
3	14a	15.0	12.7	2.3
4	14b	11.3	11.8	-0.5
5	14e	3.9	6.4	-2.5
6	14f	9.3	6.6	2.7
7	14h	5.9	5.0	0.9
8	14i	44.4	44.5	-0.1
9	14m	6.8	7.4	-0.6
10	14n	21.8	19.4	2.4
11	140	5.0	4.7	0.3
12	14q	5.1	4.9	0.2
13	14r	12.1	15.4	-3.3
14	14s	6.4	6.0	0.4
15	16a	5.5	5.9	-0.4
16	16b	44.2	43.9	0.3

Table S11. Observed and estimated/predicted activity values for the subset group (B+C) antitumor active agents according to the (B+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Entry	Compd.	Observed IC ₅₀ , μ M	Estimated IC ₅₀ , μ M	Error ^a
1	12a	3.4	11.2	-7.8
2	12c	4.4	14.5	-10.1
3	12d	8.3	9.8	-1.5
4	12f	14.9	5.6	9.3
5	14c	6.1	2.0	4.1
6	14d	9.9	11.1	-1.2
7	14g	47.6	15.7	31.9
8	14k	5.4	4.3	1.1
9	14l	40.4	3.9	36.5

Table S12. Observed and estimated/predicted activity values for the subset group (A, as an external test set) according to the (B+C)-QSAR model due to MCF7 (breast) cancinoma cell line.

Crystal data	Compound 14a	
Chemical formula	C ₂₈ H ₂₇ N ₃	
Mr	405.54	
Crystal system, space group	Orthorhombic, <i>Pc21n</i>	
Temperature (K)	298	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.0216 (1), 18.9648 (4), 19.6590 (5)	
$V(\text{\AA}^3)$	2245.03 (6)	
Ζ	4	
Radiation type	Μο Κα	
$\mu \ (mm^{-1})$	0.07	
Crystal size (mm)	$0.30 \times 0.25 \times 0.21$	
T_{\min}, T_{\max}	0.72, 0.99	
No. of measured, independent and	4030, 4030, 1254	
observed [$I > 2.0\sigma(I)$] reflections		
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.780	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.078, 1.07	
No. of reflections	1254	
No. of parameters	282	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$	0.16, -0.17	
CCDC Number	1499063	

 Table S13. Crystal data and structure refinement parameters of compound 14a.

Fig. S1. IR spectrum of compound 12f (KBr pellet).

Fig. S2. ¹H-NMR spectrum of compound **12f** in CDCl₃.

Fig. S3. ¹³C-NMR spectrum of compound **12f** in CDCl₃.

Fig. S4. IR spectrum of compound 14a (KBr pellet).

Fig. S5. ¹H-NMR spectrum of compound 14a in CDCl₃.

Fig. S6. ¹H, ¹H-COSY spectrum of compound 14a in CDCl₃.

Fig. S7. ¹³C-NMR spectrum of compound **14a** in CDCl₃.

Fig. S8. ¹H,¹³C-Heteronuclear Single Quantum Coherence (HSQC) spectrum of compound 14a in CDCl₃.

Fig. S9. IR spectrum of compound 14b (KBr pellet).

Fig. S10. ¹H-NMR spectrum of compound 14b in CDCl₃.

Fig. S11. ¹³C-NMR spectrum of compound 14b in CDCl₃.

Fig. S12. IR spectrum of compound 14c (KBr pellet).

Fig. S13. ¹H-NMR spectrum of compound 14c in CDCl₃.

Fig. S14. ¹³C-NMR spectrum of compound 14c in CDCl₃.

Fig. S15. IR spectrum of compound 14d (KBr pellet).

Fig. S16. ¹H-NMR spectrum of compound 14d in CDCl₃.

Fig. S17. ¹³C-NMR spectrum of compound 14d in CDCl₃.

Fig. S18. IR spectrum of compound 14e (KBr pellet).

Fig. S19. ¹H-NMR spectrum of compound 14e in CDCl₃.

Fig. S20. ¹³C-NMR spectrum of compound 14e in CDCl₃.

Fig. S21. IR spectrum of compound 14f (KBr pellet).

Fig. S22. ¹H-NMR spectrum of compound 14f in CDCl₃.

Fig. S23. ¹³C-NMR spectrum of compound **14f** in CDCl₃.

Fig. S24. IR spectrum of compound 14g (KBr pellet).

Fig. S25. ¹H-NMR spectrum of compound 14g in CDCl₃.

Fig. S26. ¹³C-NMR spectrum of compound **14g** in CDCl₃.

Fig. S27. IR spectrum of compound 14h (KBr pellet).

Fig. S28. ¹H-NMR spectrum of compound 14h in CDCl₃.

Fig. S29. ¹³C-NMR spectrum of compound 14h in CDCl₃.

Fig. S30. IR spectrum of compound 14i (KBr pellet).

Fig. S31. ¹H-NMR spectrum of compound 14i in CDCl₃.

Fig. S32. ¹³C-NMR spectrum of compound **14i** in CDCl₃.

Fig. S33. IR spectrum of compound 14j (KBr pellet).

Fig. S34. ¹H-NMR spectrum of compound 14j in CDCl₃.

Fig. S35. ¹³C-NMR spectrum of compound 14j in CDCl₃.

Fig. S36. IR spectrum of compound 14k (KBr pellet).

Fig. S37. ¹H-NMR spectrum of compound 14k in CDCl₃.

Fig. S38. ¹³C-NMR spectrum of compound 14k in CDCl₃.

Fig. S39. IR spectrum of compound 14l (KBr pellet).

Fig. S40. ¹H-NMR spectrum of compound 14l in CDCl₃.

Fig. S41. ¹³C-NMR spectrum of compound **14l** in CDCl₃.

Fig. S42. IR spectrum of compound 14m (KBr pellet).

Fig. S43. ¹H-NMR spectrum of compound 14m in CDCl₃.

Fig. S44. ¹³C-NMR spectrum of compound 14m in CDCl₃.

Fig. S45. IR spectrum of compound 14n (KBr pellet).

Fig. S46. ¹H-NMR spectrum of compound 14n in CDCl₃.

Fig. S47. ¹³C-NMR spectrum of compound 14n in CDCl₃.

Fig. S48. IR spectrum of compound 140 (KBr pellet).

Fig. S49. ¹H-NMR spectrum of compound 140 in CDCl₃.

Fig. S50. ¹³C-NMR spectrum of compound 14o in CDCl₃.

Fig. S51. IR spectrum of compound 14p (KBr pellet).

Fig. S52. ¹H-NMR spectrum of compound 14p in CDCl₃.

Fig. S53. ¹³C-NMR spectrum of compound 14p in CDCl₃.

Fig. S54. IR spectrum of compound 14q (KBr pellet).

Fig. S55. ¹H-NMR spectrum of compound 14q in CDCl₃.

Fig. S56. ¹³C-NMR spectrum of compound 14q in CDCl₃.

Fig. S57. IR spectrum of compound 14r (KBr pellet).

Fig. S58. ¹H-NMR spectrum of compound 14r in CDCl₃.

Fig. S59. ¹³C-NMR spectrum of compound **14r** in CDCl₃.

Fig. S60. IR spectrum of compound 14s (KBr pellet).

Fig. S61. ¹H-NMR spectrum of compound 14s in CDCl₃.

Fig. S62. ¹³C-NMR spectrum of compound 14s in CDCl₃.

Fig. S63. IR spectrum of compound 16a (KBr pellet).

Fig. S64. ¹H-NMR spectrum of compound 16a in CDCl₃.

Fig. S65. ¹³C-NMR spectrum of compound 16a in CDCl₃.

Fig. S66. ¹H-NMR spectrum of compound 16b in CDCl₃.

Fig. S67. ¹H-NMR spectrum of compound 16b in CDCl₃.

Fig. S68. ¹³C-NMR spectrum of compound 16b in CDCl₃.

Fig. S69. A projection of the optimized structure of compound 14a by semi-empirical

AM1.

Fig. S70. A projection of the optimized structure of compound 14a by semi-empirical PM3.

Fig. S71. A projection of the optimized structure of compound 14a by DFT/B3LYP with 6-31G(d,p) level of theory.

Fig. S72. Overlay diagram of 14a; red (X-ray structure), green (AM1), blue (PM3) and yellow (DFT).

Fig. S73. Dose-response curve of the tropane containing-compounds against HepG2 (liver cancer) cell line.

Fig. S74. Dose-response curve of the tropane containing-compounds against MCF7 (breast cancer) cell line.

Fig. S75. BMLR-QSAR model plot of correlations representing the observed *versus* predicted $log(IC_{50}, \mu M)$ values for the subset group (A+B) against MCF7 (beast) carcinoma cell line.

Fig. S76. BMLR-QSAR model plot of correlations representing the observed *versus* predicted $log(IC_{50}, \mu M)$ values for the subset group (A+C) against MCF7 (beast) carcinoma cell line.

Fig. S77. BMLR-QSAR model plot of correlations representing the observed *versus* predicted $log(IC_{50}, \mu M)$ values for the subset group (B+C) against MCF7 (beast) carcinoma cell line (compound **16a** is an outlier).