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Figure S1. Images from  nano crystal ionic liquid [im]HSO4
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Figure S5. Temperature change of the [im]HSO4 sample during TSC measurement for repeating 
heating cycles at 1.2oC/min (a) and cooling cycles at ~7oC/min (b) and for different heating rates 
during heating cycles (c) and corresponding cooling cycles (d). Red and blue rectangles denote 
the temperature region of observed anomalies in DC.
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Figure S6. The derivative of the temperature dependence of the direct current conductivity DC 
registered for [im]HSO4 sample for heating and cooling cycles at 0.7oC/min heating rate 1st cycle 
(a), at 0.7oC/min heating rate 2nd cycle (b), at 1.2oC/min heating rate 1st(c), at 1.5oC/min heating 
rate 1st(d), at 2.0oC/min heating rate 1st(e).
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Figure S7. The temperature dependence of activation energy of the conduction process 
registered for IL1 sample for heating and cooling cycles at 0.7oC/min heating rate 1st cycle (a), at 
0.7oC/min heating rate 2nd cycle (b), at 1.2oC/min heating rate 1st cycle (c), at 1.5oC/min heating 
rate 1st(d), at 2.0oC/min heating rate 1st(e).
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Figure S8. The temperature dependence of the direct current conductivity DC registered for 
[im]HSO4 sample at 0.7oC/min and 1.2oC/min heating rates (a) and corresponding cooling stages 
(b). The solid lines represents the best fits of Eq. (2) and dashed lines the best fits of Eq. (3) to 
the experimental data recorded in heating and cooling stages. The rectangles denote the regions 
where the anomalies were observed.

Table S1. The theoretical physical magnitudes extracted from the best fit of the 
Arrhenius-type and VFT-type equations (Eq. 2 and Eq. 3) to the experimental data during 
heating stage.

heating stage
Arrhenius Vogel-Fulcher-Tamman

heating rate Ea (kJ/mol)  (mS/cm) Ea (kJ/mol)  (mS/cm) Tg (K)
0.7 °C/min 36.3 1.65E7 3.9 1387 207.2
1.2 °C/min 36.2 1.39E7 3.4 1153 218.2
1.5 °C/min 30.6 1.57E6 2.7 788 236.6
2.0 °C/min 30.3 1.40E6 2.8 887 236.9

Table S2. The theoretical physical magnitudes extracted from the best fit of the 
Arrhenius-type equations (Eq. 2) to the experimental data during cooling stage.

cooling stage
Arrhenius I Arrhenius II

cooling rate Ea (kJ/mol)  (mS/cm) Ea (kJ/mol)  (mS/cm)
~7 °C/min 37.9 3.38E7 26.6 4.22E5
~7 °C/min 37.1 2.30E7 26.8 4.43E5
~7 °C/min 36.4 2.01E7 24.4 1.89E5
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~7 °C/min 41.7 1.66E8 22.6 1.04E5

Ethyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

White solid, 1H NMR (300 MHz, DMSO-d6): δ (ppm) 0.83 (s, 3H), 0.99 (s, 3H), 1.10 (t, J = 6.9 

Hz, 3H), 1.96 (d, J = 16.0 Hz, 1H), 2.16 (d, J = 16.1 Hz, 1H), 2.29 (s, 3H), 2.38-2.49 (m, 2H), 

3.97 (q, J = 7.0 Hz, 2H), 4.84 (s, 1H), 7.11 (d, J = 7.2 Hz, 2H), 7.37 (d, J = 7.2 Hz, 2H), 9.09 (s, 

1H); 13C NMR (75 MHz, DMSO-d6): δ (ppm) 14.6, 18.8, 26.9, 29.5, 32.6, 36.2, 50.6, 59.5, 

103.5, 110.1, 119.1, 130.2, 131.0, 145.8, 147.4, 150.0, 167.1, 194.7.

Figure S 9 Spectra data of compounds
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Ethyl 4-(p-tolyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylat

White solid, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.96 (s, 3H), 1.08 (s, 3H), 1.24 (t, J = 7.1 Hz, 

3H), 2.15-2.31 (m, 7H), 2.35 (s, 3H), 4.09 (q, J = 7.1 Hz, 2H), 5.04 (s, 1H), 6.76 (s, 1H), 7.02 (d, 

J = 7.8 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ (ppm) 14.7, 19.7, 21.5, 

27.6, 29.8, 33.1, 36.6, 41.3, 51.2, 60.2, 106.6, 112.4, 128.3, 129.0, 135.8, 143.9, 144.7, 149.3, 

167.9, 196.1.
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4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

White solid, 1H NMR (300 MHz, DMSO-d6): δ (ppm) 0.85 (s, 3H), 1.00 (s, 3H), 1.14 (t, J = 7.0 

Hz, 3H), 1.96 (d, J = 16.0 Hz, 1H), 2.15 (d, J = 16.1 Hz, 1H), 2.27 (s, 3H), 2.37-2.49 (m, 2H), 

3.66 (s, 3H), 3.97 (q, J = 7.0 Hz, 2H), 4.79 (s, 1H), 6.73 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.3 Hz, 

2H), 8.99 (s, 1H); 13C NMR (75 MHz, DMSO-d6): δ (ppm) 14.6, 18.7, 26.9, 29.6, 32.6, 35.4, 

50.6, 55.3, 59.4, 104.4, 110.7, 113.5, 128.8, 140.5, 145.1, 149.7, 157.7, 167.4, 194.
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Ethyl 4-( 2-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

yellow solid, 1H NMR: (400 MHz CDCl3): δ (ppm) 0.91 (s, 3H), 1.09 (q, J =7.2, 3H), 1.61 (s, 

3H), 2.07 (d, J =10.4, 1H), 2.18 (d, J =7.2, 1H), 2.30 (d, J=7.6, 1H), 2.29 (s, 1H), 2.38 (s, 3H), 

3.97-4.10 (m, 2H), 5.87 (s, 1H), 5.91 (s, 1H), 7.23 (t, J = 8, 1H), 7.44 (t, J =7.6, 1H) 7.50 (d, J 

=7.6, 1H), 7.74 (d, J = 8, 1H); 13C NMR (100 MHz, CDCl3): δ (ppm) 14.0, 19.5, 27.3, 29.0, 32.6, 

33.1, 41.2, 50.4, 60.0, 105.3, 111.6, 124.0, 126.7, 131.2, 132.1, 141.2, 144.0, 148.0, 148.9, 

167.1, 195.1
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Ethyl 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-
carboxylate

White solid, 1H NMR (300 MHz, DMSO-d6): δ (ppm) 0.86 (s, 3H), 1.00 (s, 3H), 1.14 (t, J = 7.0 

Hz, 3H), 1.96 (d, J = 16.0 Hz, 1H), 2.15 (d, J = 16.1 Hz, 1H), 2.26 (s, 3H), 2.36-2.49 (m, 2H), 

3.96 (q, J = 7.0 Hz, 2H), 4.74 (s, 1H), 6.56 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 8.1 Hz, 2H), 8.94 (s, 

1H), 9.01 (s, 1H); 13C NMR (75 MHz, DMSO-d6): δ (ppm) 14.6, 18.7, 26.9, 29.6, 32.6, 35.3, 

50.8, 59.4, 104.6, 110.8, 114.9, 128.8, 138.9, 144.8, 149.6, 155.7, 167.5, 194.7.
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Ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

White solid, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.92 (s, 3H), 1.10 (s, 3H), 1.19 (t, J = 7.1 Hz, 

3H), 2.16 (d, J = 16.4 Hz, 2H), 2.24-2.29 (Distorted AB system, 2H), 2.41 (s, 3H), 4.07 (q, J = 

7.1 Hz, 2H), 5.18 (s, 1H), 6.68 (s, 1H), 7.51 (d, J = 8.5 Hz, 2H), 8.09 (d, J = 8.5 Hz, 2H); 13C 

NMR (125 MHz, CDCl3): δ (ppm) 14.6, 19.8, 27.5, 29.8, 33.1, 37.7, 41.3, 51.0, 60.5, 105.3, 

111.4, 123.7, 129.4, 145.0, 146.6, 149.6, 154.9, 167.3, 195.9.
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Ethyl 4-(2,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo- 1,4,5,6,7,8-hexahydroquinoline-3 

carboxylate 

White solid; 1H NMR (400 MHz, DMSO-d6): δ (ppm)  0.86 (s, 3H, —CH3), 1.00 (s, 3H, —

CH3), 10 1.14 (t, 3H, J = 7.2 Hz, —CH3), 1.93 (d, 1H, J = 8.0 Hz, —CH2), 2.14 (d, 1H, J = 8.2 

Hz, —CH2), 2.18 (s, 3H, — CH3), 2.26 (d, 1H, J = 8.6 Hz, —CH2), 2.42 (d, 1H, J = 8.6 Hz, —

CH2), 3.63 (s, 3H, —CH3), 3.64 (s, 3H, —CH3), 3.94 (q, 2H, J = 5.4 Hz, —CH2), 4.99 (s, 1H, 

—CH), 6.62 15 (d, 1H, J = 3.2 Hz, ArH), 6.65 (d, 1H, J = 2.4 Hz, ArH), 6.77 (s, 1H, ArH), 8.97 

(s, 1H, —NH); 13C NMR (100 MHz, DMSO-d6): δ (ppm) 14.6, 18.5, 26.7, 29.8, 32.5, 33.5, 40.1, 

50.8, 55.5, 56.3, 59.3, 103.3, 109.0, 111.3, 112.4, 117.3, 136.6, 144.5, 150.5, 152.0, 153.0, 

167.7, 194.3
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Ethyl 4-(3-ethoxy-4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Carboxylate.

white solid, 1H NMR: (400 MHz, DMSO-d6 ): δ (ppm) 1.00 (s, 3H), 1.14 (t, J = 6.8), 1.28 (t, J = 

6.4), 1.90 (s, 3H), 1.97 (d, J =14, 1H), 2.16 (d, J =15.6, 1H), 2.26 (d, J =12, 1H), 2.38 (s, 3H), 

2.42 (s, 1H), 3.89 (t, J =7.2, 2H), 3.98 (q, J =7.6, 2H), 4.72 (s, 1H), 5.57 (d, J =7.6, 1H), 6.49 (d, 

J =7.6, 1H), 6.67 (s, 1H), 8.55 (s, 1H), 8.99 (s, 1H); 13C NMR (100MHz , DMSO-d6 ): δ (ppm) 

19.5, 27.1, 29.4, 32.7, 35.4, 41.1, 50.7, 51.0, 55.1, 106.0, 112.5, 113.3, 128.7, 139.3, 143.3, 

147.5, 157.7, 167.9, 195.5
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Ethyl 2,7,7-trimethyl-4-(naphthalen-1-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

white solid, 1H NMR: (400 MHz, CDCl3): δ (ppm) 0.89 (t J =8.8, 3H) 1.04 (s 3H) 2.04 (s 3H 

CH3) 2.09 (d J =13.6, 1H) 2.16 (s 1H) 2.21 (d J =9.6, 1H) 2.26 (s 1H) 2.36 (s 3H) 3.75- 3.96 (m 

2H) 5.83 (s 1H) 6.19 (s 1H) 7.28 (s 1H) 7.34 (t J =7.6, 1H) 7.434 (t J = 7.6 1H) 7.56 (t J = 7.6, 

1H) 7.63 (d J = 8 1H) 7.75 (d J = 8, 1H) 8.82 (d J = 8.8, 1H); 13C NMR (100 MHz, CDCl3): δ 

(ppm) 13.9 19.3 27.1 29.3 31.7 32.5 41.0 50.5 59.6 107.8 113.4 125.2 125.8 126.6 126.8 127.7 

131.1 133.2 142.7 146.0 147.6 167.5 195.6
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Ethyl 4-(4-chloro-3-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-
carboxylate 

White solid, 1H NMR: (400 MHz, CDCl3): δ (ppm) 0.97 (s, 3H), 1.11 (s, 3H), 1.22 (t, J =7.2, 

3H), 2.17 (d, J =16.4, 1H), 2.22 (d, J =16.8, 2H), 2.36 (s, 1H), 2.42 (s, 3H), 4.09 (q, J =7.2, 2H), 

5.11 (s, 1H), 5.89 (s, 1H), 7.55 (d, J = 2, 1H), 7.57 (d, J =1.6, 1H), 7.77 (d, J = 1.6, 1H). 13C 

NMR (100 MHz, CDCl3): δ (ppm) 14.1, 19.6, 27.1, 29.3, 32.8, 36.5, 41.1, 50.5, 60.1, 104.8, 

111.1, 124.4, 125.0, 131.0, 133.3, 144.3, 147.5, 148.2, 166.6, 195.2.
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Ethyl 4-(biphenyl-4-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8- hexahydroquinoline-3-carboxylate 

White solid; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 0.87 (s, 3H, —CH3), 1.02 (s, 3H, —

CH3), 1.17 (t, 3H, J = 7.0 Hz, —CH3), 2.02 (d, 1H, J = 8.8 Hz, —CH2), 2.20 (d,1H, J = 8.2 Hz, 

—CH2), 2.30 (s, 3H, —CH3), 2.34 (d, 1H, J = 7.6 Hz, —CH2), 2.46 (d, 1H, J = 8.6 Hz, —CH2), 

4.02 (q, 2H, J = 7.2 Hz, —CH2), 4.90 (s, 1H, —CH), 7.25 (d, 100 2H, J = 8.4 Hz, ArH), 7.34 (t, 

1H, J = 7.8 Hz, ArH), 7.42 (d, 2H, J = 8.0 Hz, ArH), 7.50 (d, 2H, J = 8.4 Hz, ArH), 7.61 (d, 2H, J 

= 9.2 Hz, ArH), 9.10 (s, 1H, —NH); 13C NMR (100 MHz, DMSO-d6): δ 14.6, 18.8, 27.1, 29.5, 

32.7, 36.0, 50.7, 59.6, 103.9, 110.3, 126.6, 126.9, 127.5, 105128.5, 129.3, 138.1, 140.1, 145.5, 

147.3, 150.1, 167.3, 194.8



31



32


