Electronic Supplementary Information

Phosphatidic acid-functionalized monolithic stationary phase for

reversed-phase/cation-exchange mixed mode chromatography

Kun Peng,^{‡a,b,c} Qiqin Wang,^{‡c} Weijia Chen,^c Donghai Xia,^c Zhengyin Zhou,^c Yuqiang Wang,^c

Zhengjin Jiang*c and Fuhai Wu*b

^a School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR Chinab

^b School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, PR China

^c Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China.

‡ K.Peng and Q. Q. Wang contributed equally to this work.

.

Figure

Phenols HO. HO. HO HO NO₂ CH₃ Paracetamol p-Nitrophenol p-Bromophenol Phenol Small peptides нα H₂N H₃C H₃C ĊΗ₃ Gly-Phe Leu-Gly-Gly Ala-Gly-Gly HO H₃C NH₂ ċн₃ CH₃ H₃C Ala-Val Leu-Gly Gly-Leu Water-soluble vitamins NH_2 ŅH₂ ОН 0 H₃C НÓ ОН Ň ≂<mark>N</mark>NĊ VB6 VB4 O HO юн H₃C NHO Ó CIN 0 ó NH₂ ΝH₂ H₂N 0 ć ОН NH₂ H₃Ć VB12 VB1 Pharmaceutical compounds 0. NH_2 NH HO H₃C сн₂ с̀Н₃ ő NH2 Aspirin sulfanilamide Caffiene Benzenesulfonamide

NH₂

CH₃ └ CH₃

NH₂

C

Coumarin

Fig. S1. Chemical structures of test compounds employed in the present study.

Fig. S2. Fourier transform infrared spectra of poly(MDPA-*co*-EDMA) monolithic stationary phases.

Fig. S3. ζ-potentials of the poly(MDPA-*co*-EDMA) monolithic column in dependence of buffer pH and relative charge of nature PA (D. Marsh, CRC handbook of lipid bilayers, CRC Press: Boca Raton, Florida, 1990.).

Fig. S4. Plots of logarithmic retention factor (In *k*) vs. the carbon number (*n*) of the alkyl substitutes of alkylphenones. Conditions: column dimensions, 140 mm × 100 μ m I.D.; mobile phase, H₂O/ACN (50/50, v/v); flow rate, 600 nL/min; detection wavelength, 214 nm; samples, (1) acetophenone; (2) propiophenone; (3) butyrophenone; (4) valerophenone; (5) hexanophenone; (6) heptanophenone; (7) octanophenone.

Fig. S5. The plot of *k* versus 1/[ammonium formate] for the separation of six small peptides on the poly(MDPA-*co*-EDMA) monolithic column. Condition: mobile phase, H₂O/ACN (90/10, v/v) containing ammonium formate pH 4.3 at various concentration; flow rate, 400 nL/min; detection wavelength, 214 nm; injection volume, 20 nL; Samples, (1) Ala-Gly-Gly; (2) Leu-Gly-Gly; (3) Ala-Val; (4) Gly-Leu; (5) Gly-Phe; (6) Leu-Val.

Fig. S6. Separation of Cyt C digest on the Poly(MDPA-*co*-EDMA) monolithic column. Conditions: column dimensions, 256 mm×100 μ m I.D; Conditions: mobile phase: Eluent A: H₂O, 0.1% TFA; eluent B: ACN , 0.1% TFA; linear gradient, 0 min/30% B, 75.0 min/75% B, 76.0 min/30% B, 80 min/30% B; detection wavelength, 214 nm; flow rate: 600 nL/min; injection volume, 1 μ L; Sample: Cyt C digest.

Column	Monomers (%, w/w)		Porogens (%, w/w)		Monomers (%, w/w)	Porogens (%, w/w)	Column pressure (MPa) ^a	Column efficiencie s
	MDPA	EDMA	IPA	BDO				(plates/m) ^a
C1	55	45	86	14	40	60	2.3	13000
C2	55	45	83	17	40	60	3.1	20000
C3	55	45	80	20	40	60	8.0	15000
C4	60	40	83	17	40	60	2.4	17000
C5	50	50	83	17	40	60	6.0	6700
C6	55	45	83	17	45	55	7.6	16000
C7	55	45	83	17	35	65	1.9	9200

Table S1. Compositions of the polymerization mixtures used for the preparation of poly(MDPAco-EDMA) monolithic columns and their properties.

Conditions: column dimension, 140 mm×100 μ m I.D.; detection wavelength, 214 nm. ^a The column pressure was measured at linear velocity of 1 mm/s; mobile phase, H₂O/ACN (60/40, v/v); sample, anisole.

Mobile phase	Relative polarity ^a	Viscosity η	Permeability k	
		(10 ⁻³ Pa·s) ^b	$(10^{-13} \mathrm{m}^2)$	
ACN	0.460	0.369	2.25	
МеОН	0.762	0.544	1.54	
50% H ₂ O/ACN	/	0.770	1.20	
H ₂ O	1.000	0.890	0.09	

 Table S2. Permeability of the poly(MDPA-co-EDMA) monolithic column.

^a Relative polarity data were from http://virtual.yosemite.cc.ca.us/smurov/orgsoltab.htm.

^b Viscosity data were from online CRC Handbook of Chemistry and Physics, 85th ed., CRC, Boca Raton, 2004-2005.

	Retention factor, k			Peak area				Peak height			
	RSD ₂ (%)	RSD ₃ (%)	RSD ₄ (%)	RSD ₁ (%)	RSD ₂ (%)	RSD ₃ (%)	RSD ₄ (%)	RSD ₁ (%)	RSD ₂ (%)	RSD ₃ (%)	RSD ₄ (%)
Run-to-run	0.51	0.34	0.34	1.75	1.78	2.52	4.54	1.58	1.60	1.87	2.81
(n=10)											
Day-to-day	2.06	2.09	2.31	2.10	2.28	2.90	5.35	1.67	1.94	2.40	4.61
(n=3)											
Column-to-column	1.38	1.33	1.38	2.43	2.60	3.60	5.95	1.96	1.75	3.23	5.53
(n=3)											
Batch-to-batch	2.82	2.29	2.11	3.75	4.09	4.13	8.47	3.91	4.37	3.17	7.32
(n=3)											

Table S3. Reproducibili	ty of the p	ly(MDPA-co-EDMA)) monolithic column.
-------------------------	-------------	------------------	----------------------

Conditions: column dimension, 140 mm×100 μ m I.D.; mobile phase, H₂O/ACN (60/40, v/v); flow rate: 600 nL/min; detection wavelength, 214 nm; sample, 1. Thiourea, 2. Dimethyl phthalate, 3. Anisiole, 4. Naphthalene.

Analytes	pK_a^a	$\log D_{3.0}^{\mathrm{b}}$	$\log D_{3.6}^{\mathrm{b}}$	$\log D_{4.3}^{\mathrm{b}}$	$\log D_{5.0}^{\mathrm{b}}$	$\log D_{5.7}^{\mathrm{b}}$	$\log D_{6.4}^{b}$
Ala-Gly-Gly	3.59/8.21	-4.58	-4.39	-4.25	-4.19	-4.19	-4.20
Leu-Gly-Gly	3.55/7.66	-3.18	-2.98	-2.84	-2.79	-2.78	-2.78
Ala-Val	3.17/8.73	-3.03	-2.87	-2.80	-2.78	-2.78	-2.78
Gly-Leu	3.15/8.33	-2.84	-2.68	-2.61	-2.59	-2.59	-2.59
Gly-Phe	3.06/8.28	-2.38	-2.24	-2.18	-2.16	-2.16	-2.16
Leu-Val	3.17/8.65	-1.62	-1.46	-1.39	-1.37	-1.37	-1.37

Table S4. Properties of small peptides (pKa and $logD_{pH}$ values).

^a p*K*a values were calculated by the ExPASy Compute p*I*/Mw tool (http://web.expasy.org/compute_pi/).

^b log*D*_{pH} values were calculated using Advanced Chemistry Development (ACD/Labs) Software version 11.02.

Pharmaceutical	MW	pK_a^a	$\log D_{7.4}^{b}$	
compounds	(g/mol)			
Aspirin	180.16	4.20	-1.69	
Caffiene	194.19	10.4	-0.13	
Sulfanilamide	172.20	10.6	-0.63	
Benzenesulfonamide	157.19	10.1	/	
Phenacetin	179.22	14.6	1.28	
Coumarin	146.14	/	1.85	
Ranitidine	314.40	8.20	-0.63	
Sulpiride	341.43	8.90	-0.99	

Table S5. Properties of pharmaceutical compounds (MW, pKa, logD_{7.4} values).

^a p*K*a were calculated by the ExPASy Compute p*I*/Mw tool (http://web.expasy.org/compute_pi/).

^b log*D*_{7.4} values were calculated using Advanced Chemistry Development (ACD/Labs) Software version 11.02.