A Series of Organic-inorganic Hybrid Materials Consisting of

Flexible Organic Amine Modified Polyoxomolybdates: Synthesis,

Structures, and Properties

Chunhua Gong^a, Xianghua Zeng^a, Chengfeng Zhu^a, Jiahui Shu^a, Pingxiu Xiao^a, Hao Xu^a, Lichun Liu^{*,a}, Junyong Zhang^a, Qingdao Zeng^{*,b}, Jingli Xie^{*a,c}

^a College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China E-mail: jlxie@mail.zjxu.edu.cn;

 ${\it lichun.liu} @mail.zjxu.edu.cn$

^bCAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS

Center for Excellence in Nanoscience, National Center for Nanoscience and

Technology, 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China

E-mail: zengqd@nanoctr.cn

^c State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093,

PR China

1 40	ie si selected solid lenge	ins and angles for completes r	7.				
Complex 1							
Zn1–O1W	1.917(6)	Zn2–N5	2.224(7)				
Zn1–N1	2.245(7)	Zn2–N6	2.027(7)				
Zn1–N2	2.081(8)	Zn2–N7	2.057(7)				
Zn1–N3	2.050(8)	Zn2–N8	2.066(8)				
Zn1–N4	2.083(8)	Zn2011	1.977(5)				
O1W–Zn1–N1	170.6(3)	N6–Zn2–N5	80.1(3)				
O1W-Zn1-N2	98.8(3)	N6–Zn2–N7	119.9(3)				
O1W-Zn1-N3	109.7(3)	N6–Zn2–N8	118.6(3)				
O1W-Zn1-N4	97.6(3)	N7–Zn2–N5	80.1(3)				
N2-Zn1-N1	78.0(3)	N7-Zn2-N8	112.7(3)				
N2-Zn1-N4	123.7(3)	N8–Zn2–N5	80.0(3)				
N3-Zn1-N1	79.6(3)	O11–Zn2–N5	175.8(3)				
N3–Zn1–N2	106.1(3)	O11–Zn2–N6	96.4(3)				
N3–Zn1–N4	117.9(3)	O11–Zn2–N7	99.9(2)				
N4–Zn1–N1	77.3(3)	O11–Zn2–N8	103.8(3)				
	Con	nplex 2					
Zn1–O1	1.998(2)	Zn1–N4	2.065(3)				
Zn1–N3	2.046(3)	Zn1–N1	2.219(3)				

Table S1 Selected bond lengths and angles for complexes 1–7.

Zn1–N2	2.049(3)		
O1–Zn1–N3	105.38(10)	N2–Zn1–N4	121.28(11)
O1–Zn1–N2	99.42(11)	O1–Zn1–N1	174.10(9)
N3–Zn1–N2	116.94(11)	N3-Zn1-N1	80.32(10)
O1–Zn1–N4	97.84(10)	N2–Zn1–N1	78.97(11)
N3-Zn1-N4	111.45(11)	N4–Zn1–N1	78.39(10)
	Com	iplex 3	
Co1–O1	1.9695(19)	Co1–N3	2.065(2)
Co1–N4	2.045(2)	Co1–N1	2.208(2)
Co1–N2	2.060(2)		
O1–Co1–N4	105.52(9)	N2-Co1-N3	121.02(10)
O1–Co1–N2	100.27(9)	O1–Co1–N1	175.43(9)
N4-Co1-N2	115.97(10)	N4–Co1–N1	78.97(9)
O1-Co1-N3	99.77(9)	N2-Co1-N1	78.22(9)
N4-Co1-N3	110.80(9)	N3-Co1-N1	77.56(9)
	Com	plex 4	
Ni1-O1	2.025(3)	Ni1–N3	2.087(4)
Ni1–N4	2.059(4)	Ni1-N1	2.096(4)
Ni1–N2	2.060(4)	Ni1-O1W	2.138(3)
O1-Ni1-N4	97.76(14)	N2-Ni1-N1	81.25(15)
O1-Ni1-N2	99.49(14)	N3-Ni1-N1	82.74(16)
N4-Ni1-N2	162.74(16)	O1-Ni1-O1W	90.03(13)
O1-Ni1-N3	94.02(14)	N4–Ni1–O1W	89.17(14)
N4-Ni1-N3	88.86(15)	N2-Ni1-O1W	90.13(14)
N2-Ni1-N3	90.62(15)	N3-Ni1-O1W	175.70(14)
O1-Ni1-N1	176.70(15)	N1-Ni1-O1W	93.19(14)
N4–Ni1–N1	81.58(15)		
	Com	plex 5	
Ni1-N4	2.053(9)	Ni2-O2	2.002(7)
Ni1-N9	2.055(8)	Ni2-N7	2.046(8)
Ni1-N2	2.058(8)	Ni2-N6	2.067(10)
Ni1-N3	2.082(8)	Ni2-N8	2.068(10)
Ni1-N1	2.094(9)	Ni2-N5	2.112(9)
Nil-Ol	2.100(7)		
N4-Ni1-N9	98.2(3)	O2-Ni2-N7	89.0(3)
N4-Ni1-N2	162.1(4)	O2-Ni2-N6	94.7(4)
N9-Ni1-N2	97.3(3)	N7-Ni2-N6	96.5(4)
N4-Ni1-N3	87.1(3)	O2-Ni2-N8	101.5(4)
N9-Ni1-N3	104.9(3)	N7-Ni2-N8	89.4(4)
N2-Ni1-N3	97.5(3)	N6-Ni2-N8	162.9(4)
N4-Ni1-N1	81.8(3)	O2-Ni2-N5	171.1(3)
N9-Ni1-N1	171.7(4)	N7-Ni2-N5	83.1(3)
N2-Ni1-N1	81.6(4)	N6-Ni2-N5	82.3(4)
N3-Ni1-N1	83.4(4)	N8-Ni2-N5	82.5(4)

N4-Ni1-O1	85.6(3)	O2-Ni2-O1W	91.8(3)
N9-Ni1-O1	79.6(3)	N7-Ni2-O1W	175.3(4)
N2-Ni1-O1	88.4(3)	N6-Ni2-O1W	88.0(4)
N3-Ni1-O1	172.0(3)	N8-Ni2-O1W	85.9(3)
N1-Ni1-O1	92.1(3)	N5-Ni2-O1W	96.4(3)
	Com	iplex 6	
Cu1–O1	1.930(2)	Cu1–N1	2.053(3)
Cu1–N4	2.037(3)	Cu1–N3	2.089(3)
Cu1–N2	2.047(3)		
O1–Cu1–N4	177.07(11)	N2-Cu1-N1	127.06(11)
O1–Cu1–N2	97.81(11)	O1–Cu1–N3	100.38(10)
N4–Cu1–N2	82.44(11)	N4–Cu1–N3	82.11(11)
O1–Cu1–N1	96.27(10)	N2-Cu1-N3	114.83(11)
N4–Cu1–N1	81.31(11)	N1–Cu1–N3	112.24(11)
	Com	plex 7	
Cu1–O1	1.917(3)	Cu2–N5	2.065(4)
Cu1–N1	2.030(4)	Cu2–N6	2.041(4)
Cu1–N2	2.079(5)	Cu2–N7	2.067(4)
Cu1–N3	2.071(5)	Cu2–N8	2.034(4)
Cu1–N4	2.021(4)	Cu2-O21	1.955(3)
O1–Cu1–N4	178.44(16)	O21-Cu2-N8	177.68(16)
O1–Cu1–N1	94.98(16)	O21-Cu2-N6	96.56(15)
N4–Cu1–N1	83.52(18)	N8-Cu2-N6	82.25(16)
O1–Cu1–N3	98.74(17)	O21-Cu2-N7	100.21(15)
N4–Cu1–N3	82.3(2)	N8-Cu2-N7	82.11(16)
N1–Cu1–N3	117.5(2)	N6-Cu2-N7	118.69(16)
O1–Cu1–N2	98.79(17)	O21-Cu2-N5	97.60(14)
N4–Cu1–N2	81.7(2)	N8-Cu2-N5	81.38(15)
N1–Cu1–N2	123.46(19)	N6-Cu2-N5	121.09(17)
N3–Cu1–N2	114.06(19)	N7-Cu2-N5	114.38(16)

Fig. S2 The Powder X–ray diffraction pattern of complexes 1–7.

Fig. S3 The TG curves of complexes 1–7.

Fig. S4 Cyclic voltammograms of 7-CPE in 0.5 M $Na_2SO_4 + 0.1$ M H_2SO_4 aqueous solution at distinct scanning rates (from inside to out: 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 mV s⁻¹), respectively.

