Supporting Information

Porous nitrogen-doped carbon tubes derived from reed catkins as high-performance anode for lithium ion batteries

Yong
zhi Zhang, Yujue Wang, Yan Meng, Guangqun Tan, Yong Guo
 \ast and Dan Xiao \ast

Fig. S1 High-resolution SEM image of PNCTs.

Fig. S2 Scheme illustrating the R values calculation based on XRD patterns for NCTs (a) and PNCTs (b).

Fig. S3 The total XPS spectrum.

Fig. S4 Charge-discharge curves of NCTs at 0.1 A g⁻¹.

Fig. S5 Charge-discharge capacity versus cycle number of freshly obtained PNCTs at different rates.

Fig. S6 Cycling performance and corresponding Coulombic efficiency of NCTs at a current density of 1 A g^{-1} .

 Table S1. Reversible capacities and rate capabilities of carbons derived from biomass and other

 precursors as LIB anodes reported recently.

Sample	Carbon precursor	Reversible capacity/ mAh g ⁻¹	Rate capability/ mAh g ⁻¹	Ref.
Banana peel pseudographite (BPPG)	Banana peel	1184 of 2 nd cycle at 50 mA g ⁻¹ and 790 of 11 th cycle at 100 mA g ⁻¹	243 at 5 A g ⁻¹	S1
Ramie fiber carbon (RFC)	ramie fibers	407 of 1^{st} cycle and 385 of 10^{th} cycle at 100 mA g ⁻¹	204 at 0.5 A g ⁻¹	S2
Corncob carbon (CC)	corncobs	415 of 1 st cycle and 359 of 10 th cycle at 100 mA g ⁻¹	251 at 0.5 A g ⁻¹	S2
Peanut shells derived porous hard carbons (PSDHCs)	Peanut shells	stable capacity of 1230 at 50 mA g ⁻¹	310 at 5 A g ⁻¹	S3
N-doped garlic peel carbon (N-doped GPC)	Garlic peel	754 of 1 st cycle at 50 mA g ⁻¹	215 at 4 A g ⁻¹	S4
Carbonaceous photonic crystals (CPCs)	Butterfly wings	590 of 10 th cycle at 50 mA g ⁻¹	113 at 5 A g ⁻¹	S5
Hierarchically porous nitrogen-rich carbon (HPNC)	Wheat straw	1470 of 1 st cycle and 1327 of 50 th at 37 mA g ⁻¹	566 at 7.4 A g ⁻¹	S6
Ox horn derived carbon (OHC)	Ox horn	1231 of 2^{nd} cycle and 1181 of 10^{th} cycle at 100 mA g ⁻¹	304 at 5 A g ⁻¹	S7
Hierarchical porous nitrogen-doped carbon- nanosheets (HPNC- NSs)	Silk	1913 of 1 st cycle and stable capacity of 1865 at 100 mA g ⁻¹	523 at 5 A g ⁻¹	S8
Micro-sized porous carbon spheres (PCSs)	Corn starch	519 of 1 st cycle and 507 of 100 th cycle at 100 mA g ⁻¹	245 at 5 A g ⁻¹	S9
Porous carbon nanofibers/nanosheets hybrid (CNFS)	Cornstalk	stable capacity of 578 at 100 mA g ⁻¹	454 at 3 A g ⁻¹	S10
Interconnected highly graphitic carbon nanosheets (HGCNS)	Wheat stalk	502 of 1^{st} cycle and 443.7 of 50 th cycle at 37.2 mA g ⁻¹	161.4 at 3.72 A g ⁻¹	S11
Cotton derived porous carbon	Cotton cellulose	1052.76 of 1 st cycle and 793 of 500 th cycle at 500 mA g ⁻¹	355 at 4 A g ⁻¹	S12
Porous carbons derived from microalgae	Microalgae	445 of 1^{st} cycle and 433 of 100^{th} cycle at 37.5 mA g ⁻¹	355 at 1 A g ⁻¹	S13
Porous carbon material (ACSB)	Shells of broad beans	845.2 of 1 st cycle at 186 mA g ⁻¹	261.5 at 0.372 A g ⁻¹	S14

References

- S1 E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton and D.
 Mitlin, ACS Nano, 2014, 8, 7115-7129.
- S2 Q. Jiang, Z. Zhang, S. Yin, Z. Guo, S. Wang and C. Feng, *Appl. Surf. Sci.*, 2016, **379**, 73-82.
- S3 W. M. Lv, F. S. Wen, J. Y. Xiang, J. Zhao, L. Li, L. M. Wang, Z. Y. Liu and Y. J. Tian, *Electrochim. Acta*, 2015, **176**, 533-541.
- S4 V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham and S. Gopukumar, *Electrochim. Acta*, 2016, **190**, 337-345.
- S5 W. M. Lv, J. Zhao, F. S. Wen, J. Y. Xiang, L. Li, L. M. Wang, Z. Y. Liu and Y. J. Tian, J. Mater. Chem. A, 2015, 3, 13786-13793.
- S6 L. Chen, Y. Z. Zhang, C. H. Lin, W. Yang, Y. Meng, Y. Guo, M. L. Li and D. Xiao, J. Mater. Chem. A, 2014, 2, 9684-9690.
- S7 J. K. Ou, Y. Z. Zhang, L. Chen, Q. Zhao, Y. Meng, Y. Guo and D. Xiao, *J. Mater. Chem. A*, 2015, **3**, 6534-6541.
- S8 H. Hou, C. B. Cao, F. Idrees and X. L. Ma, ACS Nano, 2015, 9, 2556-2564.
- M. Chen, C. Yu, S. H. Liu, X. M. Fan, C. T. Zhao, X. Zhang and J. S. Qiu, *Nanoscale*, 2015, 7, 1791-1795.
- S10 S. B. Wang, C. L. Xiao, Y. L. Xing, H. Z. Xu and S. C. Zhang, J. Mater. Chem. A, 2015, 3, 6742-6746.
- S11 X. Y. Zhou, F. Chen, T. Bai, B. Long, Q. C. Liao, Y. P. Ren and J. Yang, *Green Chem.*, 2016, 18, 2078-2088.
- S12 C. Y. Zhu and T. Akiyama, Green Chem., 2016, 18, 2106-2144.
- S13 H. H. Ru, N. B. Bai, K. X. Xiang, W. Zhou, H. Chen and X. S. Zhao, *Electrochim. Acta*, 2016, **194**, 10-16.
- S14 G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li and X. Zhang, *Green Chem.*, 2015, 17, 1668-1674.

Reversible capacity/ Rate capability/ Carbon Ref. Sample mAh g⁻¹ mAh g⁻¹ precursor Hierarchical porous Phenolic stable capacity of 585 mA h carbon microspheres formaldehyde 200 at 1 A g⁻¹ S15 g-1 at 50 mA g-1 (HPCM) resin Amorphous nitrogen-130.1 at 10 $C_{10}H_{12}N_2O_8M_-$ 699.2 of 1st cycle at 100 doped carbon S16 mA g⁻¹ $n Na_2 \cdot 2H_2O$ A g⁻¹ nanosheets Carbon nanocages 1-320 at 3.72 supported by ultrathin 823.4 of 1st cycle at 186 hexadecylam-S17 carbon nanosheets mA g⁻¹ A g⁻¹ ine (CNCs@CNSs) Nanoporous hard 357 of 1st cycle at 100 ~80 at 3.72 carbon microspheres Phenolic resin S18 mA g⁻¹ A g⁻¹ (NHCSs) Hollow graphite 177.4 at 1 stable capacity of 385.5 at S19 Isotropic pitch 50 mA g⁻¹ fibers (HGFs) A g-1 Boron and nitrogen co-Polypyrrole 1261 of 1st cycle at 200 282 at 2 doped porous carbon S20 Nanotubes (BN-(PPy) mA g⁻¹ A g⁻¹ PCNTs) Nitrogen-doped 1100.6 of 1st cycle at 500 214 at 4 mesoporous carbon Dopamine S21 hollow spheres (NmA g⁻¹ A g-1 MCHSs) Nitrogen-enriched Melamine and 1323 of 1st cycle at 50 473 at 1 porous carbon nanofiber polyacrylonitri S22 mA g⁻¹ A g⁻¹ networks (NPCNFs) -le Polypyrrole 957.8 of 1st cycle at 500 325.9 at 20 Nitrogen-containing S23 carbon (N-C) film A g⁻¹ (PPy) mA g⁻¹ 552 of 1st cycle at 50 106 at 5 Carbon nanospheres S24 Natural gas (CNSs) A g-1 mA g⁻¹ 1025.7 of 1st cycle at 100 1025.7 at 0.25 PVP-derived carbon Polyvinylpyrro S25 nanofibers (PVP-CNF) -lidone (PVP) mA g⁻¹ A g⁻¹ 3D 397 of 1st cycle at 37.2 248 at 0.372 A Ethylene S26 free-standing carbon g^{-1} mA g⁻¹ nanotubes (CNTs)

 Table S2. Reversible capacities and rate capabilities of carbons derived from other precursors as

 LIB anodes reported recently.

References

S15 F. Wang, R. Song, H. Song, X. Chen, J. Zhou, Z. Ma, M. Li and Q. Lei, Carbon, 2015, 81,

314-321.

- S16 W. Guo, X. Li, J. T. Xu, H. K. Liu, J. M. Ma and S. X. Dou, *Electrochim. Acta*, 2016, 188, 414-420.
- S17 H. Ma, H. Jiang, Y. Jin, L. Dang, Q. Lu and F. Gao, *Carbon*, 2016, **105**, 586-592.
- S18 S. M. Jafari, M. Khosravi and M. Mollazadeh, *Electrochim. Acta*, 2016, 203, 9-20.
- S19 L.Y. Wang, Z. J. Liu, Q. G. Guo, G. Z. Wang, J. H. Yang, P. Lie, X. L. Wang and L. Liu, *Electrochim. Acta*, 2016, **199**, 204-209.
- S20 L. Zhang, G. Xia, Z. Guo, X. Li, D. Sun and X. Yu, Int. J. Hydrogen Energy, 2016, 41, 14252-14260.
- S21 K. F. Huo, W. L. An, J. J. Fu, B. Gao, L. Wang, X. Peng, G. J. Cheng and P. K. Chu, J. Power Sources, 2016, 324, 233-238.
- S22 D. Nan, Z.-H. Huang, R. Lv, L. Yang, J.-G. Wang, W. Shen, Y. Lin, X. Yu, L. Ye, H. Sun and F. Kang, J. Mater. Chem. A, 2014, 2, 19678-19684.
- S23 T. Yuan, Y. S. He, W. Zhang and Z. F. Ma, Chem. Commun., 2016, 52, 112-115.
- S24 C. Cui, X. Sun, X. Li, C. Li and Y. Niu, RSC Adv., 2015, 5, 55348-55352.
- S25 L. T. Dong,G. W. Wang, X. F. Li, D. B. Xiong, B. Yan, B. X. Chen, D. J. Li and Y. H. Cui, *RSC Adv.*, 2016, 6, 4193-4199.
- S26 C. Kang, E. Cha, R. Baskaran and W. Choi, *Nanotechnology*, 2016, 27, 105402-105408.