Supporting Information

One-step synthesis of hierarchical Ni-Fe-Al layered double hydroxide with excellent sensing properties for NO_x at room

temperature

Dahai Hong^a, Jiawei Zhang^b, Afrasiab Ur Rehman^a, Lihong Gong^c, Jiao Zhou^a, Kan Kan^a, Li li^{a,b*}, Keying Shi^{a, c*}

^a Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Material Science, HeilongjiangUniversity, Harbin, 150080, P. R. China.

^b Key Laboratory of Chemical Engineering Process&Technology for High-efficiency

Conversion, School of Chemistry and Material Science, Heilongjiang University,

Harbin 150080, P. R. China.

^cKey Laboratory for Photonic and Electronic, Ministry of Education. Modern experiment center, Harbin Normal University, Harbin 150025, P. R. China.

Corresponding author. Tel.: +86 451 86609141; +86 451 86604920

E-mail: llwjjhlju@sina.cn,shikeying2008@163.com

Fig. S1. (a, b) TEM images of pure NA-LDHs.

Fig. S2 TEM images of NFA 1-1

Fig. S3 (a, b) TEM images of NFA 1-1

(High magnification TEM of Fig. 3A : see blue box)

Fig. S4 a,b,c and d is Nitrogen adsorption-desorption isotherms and pore size distribution curve of NA-LDHs NFA 1-2 NFA 1-1 and NFA 2-1 respectively.

Fig. S5 STEM image/EDS mapping of NFA 1-1 sample.(a) bright field image, (b) EDS spectra, (c, d, e, f) corresponding to Ni, Al, Fe and O elemental mapping, respectively.

Fig. S6 Dynamic response curves of sensors to 0.1-100 ppm NO_x at room temperature in air. (A) NA-LDHs. (B) NFA 1-2 and (C) NFA 2-1

	100	50	30	20	10	5	3	1	0.5	0.3	0.1
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sensitivity (%)	82	71.3	69.5	65.5	62	55.1	46.4	43.4	28.2	26.3	18
Time (s)	2.6	3.3	7.3	8	9	10	11.3	12.6	14.6	15.3	19.3

Table S1. Sensitivity results of NFA 1-1 sensor to NO_x at room temperature in air

Table S2. Fitted impedance parameters of samples

Samples	R_{Ω} (Ω)	C (F cm ⁻²)	R_{ct} (Ω)
NA-LDHs	64.84	4.37×10^{-6}	5769
NFA 1-2	62.87	3.041×10^{-6}	925.4
NFA 1-1	60.91	1.939×10^{-6}	329.2
NFA 2-1	71.36	3.242×10^{-6}	1618

Here, R_{Ω} indicates the uncompensated bulk resistance of the electrolyte, separator and electrode, where R_{ct} is attributed to the charge-transfer resistance at the active material interface and *C* is the constant phase angle element, involving double layer capacitance.