Electronic Supporting Information (ESI)

Palladium(II)-Catalyzed Hydroxy-involved Enolate-type Efficient C–C Functionalization of Hydroxynaphthoquinones at Room Temperature

Nan Wang ^a, Xingsen Wu ^a, Taoyu Qin ^a, Jianrui Zhou ^a, Qidong You ^{a,*}, Xiaojin Zhang ^{a,b,*}

- ^b Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
- * Corresponding authors. E-mail: zxj@cpu.edu.cn (X. Zhang), youqd@163.com (Q. You).

Table of Contents

General Methods	
Experimental Procedure	S2
Additional Reaction Optimization	S2
Large Scale Experiment	S3
Control Experiments	S4
Analytical Data for All Compounds	S4
Reference	
	General Methods Experimental Procedure Additional Reaction Optimization Large Scale Experiment Control Experiments Analytical Data for All Compounds Reference

^a State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China

1 General Methods

Reactions were monitored by thin-layer chromatography on silica gel plates (650F-254) visualized under UV light. Melting points were determined on a Mel-TEMP II melting point apparatus without correction. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO on a Bruker Avance 300 MHz spectrometer at 300 MHz and 75 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) from tetramethylsilane (TMS) using the residual solvent resonance (CDCl₃: 7.26 ppm, 1.56 ppm (HDO) for ¹H NMR, 77.16 ppm for ¹³C NMR; DMSO: 3.30 ppm and 2.50 ppm for ¹H NMR; THF: 25.31 ppm, 67.21 ppm for ¹³C NMR). Multiplicities are abbreviated as follows: s = singlet, d = doublet, dd = doublet of doublet doublets, dt = doublet of triplet, dtd = doublet of triple doublets t = triplet, q = quartet, m = multiplet). MS spectra were recorded on a LC/MSD TOF HR-MS Spectrum. Flash column chromatography was performed with 100-200 mesh silica gel and yields refer to chromatographically and spectroscopically pure compounds.

All chemicals purchased from commercial suppliers were used as received unless otherwise stated. $Pd(OAc)_2$ was purchased from Aladdin. $1t-1w^{[1]}$, $2c^{[2]}$, $2g^{[3]}$, $2k^{[2]}$ and $4^{[3]}$ were prepared according to the literature procedures. All solvents were reagent grade and, when necessary, were purified and dried by standard methods.

2 Experimental Procedure

General experimental procedure for synthesis of 3a-3y

A mixture of (substituted) 2-hydroxy-1,4-naphthoquinone (**1**, 0.30 mmol, 1.0 equiv), (substituted) terminal alkenes (**2**, 0.45 mmol, 1.5 equiv), Cu(OAc)₂ (0.30 mmol, 54 mg, 1.0 equiv), NaOAc (0.30 mmol, 41 mg, 1.0 equiv), Pd(OAc)₂ (10 mol %) and THF (solvent, 10 mL) was stired for 4 h at 25 °C (**3r** and **3s** was conducted at 50 °C) under air condition. Upon completion of the reaction, as determined by TLC, the mixture was filtered through a celite pad, and then washed with cooled water (20 mL), extracted with dichloromethane (3×20 mL) and dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel using dichloromethane as the eluent to afford corresponding product.

3 Additional Reaction Optimization

1	1.5	1	Cu(OAc) ₂	Pd(OAc) ₂	THF	84
2	1.5	1.5	Cu(OAc) ₂	Pd(OAc) ₂	THF	85
3	1.5	2	Cu(OAc) ₂	Pd(OAc) ₂	THF	85

^[a] Reaction condition: **1a** (0.30 mmol), Oxidant (1.0 equiv), Base (NaOAc, 1.0 equiv) and Pd catalyst (10 mol %) in solvent (10 ml) for 4 h under air.

^[b] Isolated yield.

Entry	2a equiv	Base equiv	Base	Oxidant	Catalyst	Solvent	Yield [%] ^[b]
1	1.5	2	K ₂ CO ₃	Cu(OAc) ₂	Pd(OAc) ₂	THF	32
2	1.5	2	Et_3N	Cu(OAc) ₂	Pd(OAc) ₂	THF	Trace
3	1.5	2	NaOAc	Cu(OAc) ₂	Pd(OAc) ₂	THF	85
4	1.5	2	K_3PO_4	Cu(OAc) ₂	Pd(OAc) ₂	THF	Trace
5	1.5	1	NaOAc	Cu(OAc) ₂	Pd(OAc) ₂	THF	84
6	1.5	1.5	NaOAc	Cu(OAc) ₂	$Pd(OAc)_2$	THF	84
7	1.5	2	NaOAc	Cu(OAc) ₂	Pd(OAc) ₂	THF	85

Table S2 Optimization of the base^[a]

^[a] Reaction condition: **1a** (0.30 mmol), Oxidant (1.0 equiv), Base (NaOAc, 1.0 equiv) and Pd catalyst (10 mol %) in solvent (10 ml) for 4 h under air.

^[b] Isolated yield.

Table S3 Optimization of catalyst amount^[a]

Entry	2a	Oxidant	Catalyst equiv	Cotolyct	Colvert	Yield
	equiv		[mol %]	Catalyst	Solvent	[%] ^[b]
1	1.5	Cu(OAc) ₂	5	Pd(OAc) ₂	THF	43
2	1.5	Cu(OAc) ₂	10	Pd(OAc) ₂	THF	84
3	1.5	Cu(OAc) ₂	15	$Pd(OAc)_2$	THF	84
4	1.5	Cu(OAc) ₂	20	$Pd(OAc)_2$	THF	86

^[a] Reaction condition: **1a** (0.30 mmol), Oxidant (1.0 equiv), Base (NaOAc, 1.0 equiv) and Pd catalyst (10 mol %) in solvent (10 ml) for 4 h under air.

^[b] Isolated yield.

Table S4 Negative control ^[a]							
Entry	2a equiv	Oxidant	Catalyst	Solvent	Yield [%] ^[b]		
1	1.5	Cu(OAc) ₂	-	THF	15		
2	1.5	-	Pd(OAc) ₂	THF	NR ^[c]		
3	1.5	-	-	THF	NR ^[c]		

^[a] Reaction condition: **1a** (0.30 mmol), Oxidant (1.0 equiv), Base (NaOAc, 1.0 equiv) and Pd catalyst (10 mol %) in solvent (10 ml) for 4 h under air.

^[b] Isolated yield.

[c] NR = No reaction.

4 Large Scale Experiment

A 250 mL round-bottomed flask with a magnetic stir bar was charged with **1a** (2.61 g, 15 mmol), Pd(OAc)₂ (336 mg, 10.0 mol %), Cu(OAc)₂ (2.71 g, 15 mmol, 1.0 equiv), NaOAc (1.23 g, 15 mmol, 1.0 equiv), **2a** (2.34 g/2.57 ml, 22.5 mmol, 1.5 equiv), and THF (50 mL) was stired for 6 h at 25 °C under air condition. Upon completion of the reaction, as determined by TLC, the mixture was filtered through a celite pad, and then washed with cooled water (50 mL), extracted with dichloromethane (3 \times 30 mL) and dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel using dichloromethane as the eluent to afford corresponding product.

5 Control Experiments

A mixture of 2-methoxynaphthalene-1,4-dione (**4**, 56.4 mg, 0.30 mmol, 1.0 equiv), terminal alkenes (**2a**, 0.45 mmol, 47mg/0.51 mL, 1.5 equiv), $Cu(OAc)_2$ (0.30 mmol, 54 mg, 1.0 equiv), NaOAc (0.30 mmol, 41 mg, 1.0 equiv), Pd(OAc)_2 (10 mol %) and THF (solvent, 10 mL) was stired for 4 h at 25 °C under air condition and determined by TLC. No reaction was observed.

A mixture of naphthalene-1,4-dione (**6**, 56.4 mg, 0.30 mmol, 1.0 equiv), terminal alkenes (**2a**, 0.45 mmol, 47 mg/0.51 mL, 1.5 equiv), Cu(OAc)₂ (0.30 mmol, 54 mg, 1.0 equiv), NaOAc (0.30 mmol, 41 mg, 1.0 equiv), Pd(OAc)₂ (10 mol %) and THF (solvent, 10 mL) was stired for 4 h at 25 °C under air condition and determined by TLC. No reaction was observed.

6 Analytical Data for All Compounds

2-hydroxy-3-styrylnaphthalene-1,4-dione (3a)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 84% (70.2 mg)Physical appearance: red solid

M.p. 145.2-146.8 °C; ¹**H NMR** (300 MHz, DMSO-*d*₆): δ (ppm) 8.02 (td, *J* = 7.5, 1.5 Hz, 2H), 7.90-7.77 (m, 3H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 8.9 Hz, 1H), 7.29 (d, *J* = 6.7 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 183.67, 180.51, 151.18, 138.83, 137.29, 134.80, 134.50, 132.72, 132.24, 129.06, 128.23, 126.69, 126.22, 125.57, 118.21, 116.90; **HRMS** (ESI): calc. for C₁₈H₁₁O₃ [M–H]: 275.0714, found: 275.0701 *m/z*.

Figure E1 ¹H-NMR spectrum of **3a** in CDCl₃

Figure E2 ¹³C-NMR spectrum of **3a** in CDCl₃

2-hydroxy-3-(4-methylstyryl)naphthalene-1,4-dione (3b)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 87% (75.7 mg)Physical appearance: red solid

M.p. 125.6-126.7 °C; ¹**H NMR** (300 MHz, DMSO-*d*₆): δ (ppm) 8.02 (td, J = 7.4, 1.5 Hz, 2H), 7.90 – 7.76 (m, 3H), 7.46 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 16.8 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 2.32 (s, 3H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 184.27, 180.97, 151.45, 139.41, 138.88, 135.08, 134.92, 133.20, 132.76, 129.61, 129.48, 127.21, 127.15, 126.03, 118.97, 116.43, 21.40; **HRMS** (ESI): calc. for C₁₉H₁₃O₃ [M–H]⁻: 289.087, found: 289.0864 *m/z*.

2-(2,4-dimethylstyryl)-3-hydroxynaphthalene-1,4-dione (3c)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 89% (80.9 mg)Physical appearance: red solid

M.p. 118.4-119.8 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.19 (d, J = 7.5 Hz, 1H), 8.11 (d, J = 7.4 Hz, 1H), 7.96 (s, 1H), 7.79 (d, J = 141 Hz, 1H), 7.75 (dt, J = 20.9, 7.2 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 13.9 Hz, 2H), 2.44 (s, 3H), 2.35 (s, 3H); ¹³C **NMR** (75 MHz, CDCl3): δ (ppm) 184.33, 181.08, 151.46, 138.61, 137.23, 136.62, 134.90, 134.09, 133.17, 132.87, 131.32, 129.69, 127.16, 127.11, 126.02, 125.37, 119.30, 117.43, 21.23, 19.76; **HRMS** (ESI): calc. for C₂₀H₁₅O₃ [M-H]: 303.1027, found: 303.1030 *m/z*.

Figure E6¹³C-NMR spectrum of **3c** in CDCl₃

2-(2,5-dimethylstyryl)-3-hydroxynaphthalene-1,4-dione (3d)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 88% (80.3 mg)Physical appearance: red solid

M.p. 120.2-123.0 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.23 (d, J = 11.9 Hz, 1H), 8.19 (d, J = 2.6 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.76 (dt, J = 21.5, 7.4 Hz, 2H), 7.55 (s, 1H), 7.34 (d, J = 15 Hz, 1H), 7.07 (q, J = 7.3 Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 183.81, 180.58, 151.07, 136.83, 136.03, 135.15, 134.46, 133.18, 132.71, 132.25, 129.91, 129.09, 128.91, 126.66, 125.54, 125.39, 118.56, 117.50, 20.57, 18.89; **HRMS** (ESI): calc. for C₂₀H₁₅O₃ [M–H]: 303.1027, found: 303.1019 *m/z*.

2-hydroxy-3-(4-methoxystyryl)naphthalene-1,4-dione (3e)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 91% (83.5 mg)Physical appearance: red solid

M.p. 143.2-145.8 °C; ¹**H NMR** (300 MHz, DMSO-*d*₆): δ (ppm) 8.01 (td, J = 7.2, 1.2 Hz, 2H), 7.89-7.78 (m, 3H), 7.51 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 184.32, 180.87, 160.24, 151.20, 139.08, 134.79, 133.14, 132.78, 130.73, 129.68, 128.62, 127.09, 125.96, 119.20, 115.30, 114.21, 55.34; **HRMS** (ESI): calc. for C₁₉H₁₃O₄ [M-H]: 305.0819, found: 305.0822 *m/z*.

Figure E10¹³C-NMR spectrum of **3e** in CDCl₃

2-hydroxy-3-(2-methoxystyryl)naphthalene-1,4-dione (3f)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 90% (82.6 mg)Physical appearance: red solid

M.p. 144.5-146.2 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.32 (d, J = 16.9 Hz, 1H), 8.19 (dd, J = 7.3, 1.2 Hz, 1H), 8.11 (dd, J = 7.7, 1.1 Hz, 1H), 7.78 (td, J = 7.6, 1.6 Hz, 1H), 7.72 (ddd, J = 7.7, 4.3, 1.7 Hz, 2H), 7.64, (d, J = 99 Hz, 1H) 7.42 (d, J = 16.9 Hz, 1H), 7.01 (t, J = 6.9 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 3.93 (s, 3H); ¹³C **NMR** (75 MHz, CDCl3): δ (ppm) 183.78, 180.52, 156.85, 151.00, 134.75, 134.37, 133.69, 132.64, 132.26, 129.36, 129.14, 126.63, 126.27, 125.50, 120.29, 118.81, 117.22, 110.45, 55.11; **HRMS** (ESI[¬]): calc. for C₁₉H₁₃O₄ [M⁻H][¬]: 305.0819, found: 305.0809 *m/z*.

2-(2,4-dimethoxystyryl)-3-hydroxynaphthalene-1,4-dione (3g)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 92% (92.8 mg)Physical appearance: dark red solid

M.p. 132.5-133.8 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.09 (d, J = 7.7 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.52 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.48 (d, J = 2.2 Hz, 2H), 6.41 (d, J = 2.2 Hz, 1H), 6.39 (d, J = 2.3 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 183.68, 180.92, 160.12, 157.28, 146.59, 134.93, 129.25, 128.89, 128.06, 127.89, 127.09, 126.49, 123.47, 122.68, 121.64, 115.02, 103.42, 98.82, 54.94, 54.74.; HRMS (ESI): calc. for C₂₀H₁₆O₅ [M–H]⁻: 335.0925, found: 335.0916 *m/z*.

Figure E13 ¹H-NMR spectrum of **3g** in CDCl₃

Figure E14 ¹³C-NMR spectrum of **3g** in CDCl₃

2-(4-fluorostyryl)-3-hydroxynaphthalene-1,4-dione (3h)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 66% (58.4 mg)Physical appearance: red solid

M.p. 202.2-204.5 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.17 (d, J = 7.4 Hz, 1H), 8.10 (d, J = 7.4 Hz, 1H), 7.97 (d, J = 9.4 Hz, 1H), 7.75 (dt, J = 21.8, 7.4 Hz, 2H), 7.62 (d, J = 85.5 Hz, 1H) 7.57 (dd, J = 8.1, 5.6 Hz, 2H), 7.07 (t, J = 8.5 Hz, 2H); ¹³C **NMR** (75 MHz, CDCl3): δ (ppm) 183.63, 180.46, 162.48 (¹*J*_{CF} = 123.8 Hz), 151.13, 137.48, 134.52, 133.53, 132.75, 132.20, 129.04, 128.30 (²*J*_{CF} = 4.1 Hz), 126.67, 125.59, 118.06, 116.63 (³*J*_{CF} = 1.1 Hz), 115.25 (⁴*J*_{CF} = 10.5 Hz); **HRMS** (ESI⁻): calc. for C₁₈H₁₀FO₃ [M⁻H⁻]: 293.0619, found: 293.0622 *m/z*.

2-(4-chlorostyryl)-3-hydroxynaphthalene-1,4-dione (3i)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 74% (69.6 mg)Physical appearance: red solid

M.p. 192.3-194.8 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.20 (d, J = 7.1 Hz, 1H), 8.12 (d, J = 7.4 Hz, 1H), 7.93 (d, J = 16.6 Hz, 1H), 7.84- 7.69 (m, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.42-7.33 (m, 3H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 184.07, 180.98, 151.82, 137.80, 136.30, 135.10, 134.34, 133.30, 132.71, 129.53, 128.94, 128.31, 127.21, 126.14, 118.39, 117.96; **HRMS** (ESI): calc. for C₁₈H₁₀ClO₃ [M–H]: 309.0324, found: 309.0325 *m/z*.

Figure E17 ¹H-NMR spectrum of **3i** in CDCl₃

Figure E18¹³C-NMR spectrum of **3i** in CDCl₃

2-(2-chlorostyryl)-3-hydroxynaphthalene-1,4-dione (3j)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 74% (68.8 mg)Physical appearance: red solid

M.p. 193.8-195.7 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.36 (d, J = 17.2 Hz, 1H), 8.21 (d, J = 7.3 Hz, 1H), 8.18-8.02 (m, 2H), 7.88-7.67 (m, 3H), 7.48-7.30 (m, 3H); ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) 183.97, 181.11, 152.11, 136.03, 135.11, 134.17, 133.28, 132.79, 129.91, 129.60, 129.43, 127.27, 127.00, 126.76, 126.17, 119.80, 118.44, 113.58; **HRMS** (ESI): calc. for C₁₈H₁₀ClO₃ [M-H]: 309.0324, found: 309.0309 *m/z*.

2-(2,4-dichlorostyryl)-3-hydroxynaphthalene-1,4-dione (3k)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 65% (64.6 mg)Physical appearance: red solid

M.p. 212.9-215.4 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.28 (d, J = 16.5 Hz, 1H), 8.20 (d, J = 6.8 Hz, 1H), 8.13 (d, J = 7.3 Hz, 1H), 7.81 (t, J = 7.3 Hz, 1H), 7.74 (dd, J = 7.8, 4.6 Hz, 2H), 7.43 (d, J = 1.7 Hz, 1H), 7.37 (d, J = 16.6 Hz, 1H), 7.32-7.28 (m, 1H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 183.85, 180.99, 152.18, 135.19, 134.53, 134.45, 133.65, 133.34, 132.63, 129.64, 129.48, 127.40, 127.37, 127.26, 126.20, 120.17, 120.16, 118.04; **HRMS** (ESI): calc. for C₁₈H₉Cl₂O₃ [M-H]: 342.9934, found: 342.9926 *m/z*.

2-(4-bromostyryl)-3-hydroxynaphthalene-1,4-dione (3l)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 70% (74.3 mg)Physical appearance: red solid

M.p. 181.3-182.2 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.22-8.17, 7.86-7.95 (m, 1H), 8.15 (d, J = 0.45 Hz, 1H), 8.12 (d, J = 1.4 Hz, 1H), 7.91 (d, J = 16.7 Hz, 1H), 7.78 (dtd, J = 23.4, 7.5, 1.4 Hz, 4H), 7.56-7.44 (dd, J = 2H), 7.39 (d, J = 16.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 174.61, 171.69, 146.03, 127.62, 125.01, 124.82, 123.02, 122.85, 121.63, 118.32, 116.95, 116.47, 116.23, 115.87, 107.84, 100.43; **HRMS** (ESI): calc. for C₁₈H₁₀BrO₃ [M–H]⁻: 353.9819, found: 353.9804 *m/z*.

4-(2-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)vinyl)benzonitrile (3m)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 87% (78.6 mg)Physical appearance: red solid

M.p. 214.7-218.9 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.21 (d, J = 7.6 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 16.7 Hz, 1H), 7.79 (dt, J = 22.9, 7.6 Hz, 2H), 7.68 (s, 4H), 7.51 (d, J = 16.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 183.29, 180.48, 151.98, 141.68, 136.17, 134.85, 132.94, 132.14, 132.00, 128.93, 126.95, 126.80, 125.79, 120.46, 118.43, 117.13, 110.96; **HRMS** (ESI): calc. for C₁₉H₁₀NO₃ [M–H]: 300.0666, found: 300.0667 *m/z*.

Figure E25 ¹H-NMR spectrum of **3m** in CDCl₃

Figure E26¹³C-NMR spectrum of **3m** in CDCl₃

2-(4-fluoro-2-methylstyryl)-3-hydroxynaphthalene-1,4-dione (3n)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 77% (71.1 mg)Physical appearance: red solid

M.p. 165.7-168.2 °C; ¹**H** NMR (300 MHz, DMSO-*d*₆): δ (ppm) 8.05-7.97 (m, 2H), 7.88-7.78 (m, 2H), 7.57 (d, *J* = 7.0 Hz, 2H), 7.43-7.28 (m, 3H), 6.50 (s, 1H), 1.95 (s, 3H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 184.04, 180.95, 150.73, 142.83 (${}^{1}J_{CF} = 59.3$ Hz), 134.58 (${}^{2}J_{CF} = 1.5$ Hz), 132.61, 132.49 (${}^{3}J_{CF} = 1.5$ Hz), 129.07, 127.78, 127.68, 127.47 (${}^{4}J_{CF} = 2.3$ Hz), 127.33, 127.05, 126.51, 125.75, 120.33, 115.43 (${}^{5}J_{CF} = 7.5$ Hz), 114.60 (${}^{6}J_{CF} = 10.9$ Hz) 19.04; **HRMS** (ESI): calc. for C₁₉H₁₂FO₃ [M–H]: 307.0747, found: 307.0776 *m/z*.

2-(2-([1,1'-biphenyl]-4-yl)vinyl)-3-hydroxynaphthalene-1,4-dione (30)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 91% (96.1 mg)Physical appearance: dark red solid

M.p. 224.2-224.6 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.24-8.16 (m, 1H), 8.15-8.09 (m, 1H), 8.03 (d, *J* = 17.1 Hz, 2H), 7.77-7.82 (m, 1H), 7.75-7.71 (m, 1H), 7.70-7.61 (m, 5H), 7.48 (d, *J* = 6.4 Hz, 2H), 7.44 (d, *J* = 2.6 Hz, 1H), 7.37 (t, *J* = 7.3 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 183.68, 180.46, 151.16, 140.87, 140.00, 138.36, 136.38, 134.48, 132.72, 132.28, 129.11, 128.32, 127.15, 127.00, 126.88, 126.68, 126.46, 125.57, 118.29, 116.94; **HRMS** (ESI⁻): calc. for C₂₄H₁₅O₃ [M⁻H]⁻: 351.1027, found: 351.1025 *m/z*.

Figure E30 ¹³C-NMR spectrum of **30** in CDCl₃

2-hydroxy-3-(2-(thiophen-2-yl)vinyl)naphthalene-1,4-dione (3p)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 46% (38.8 mg)Physical appearance: red solid

M.p. 196.5-199.2 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.11 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.85-7.68 (m, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 5.0 Hz, 1H), 7.07-7.03 (m, 1H), 6.90 (d, J = 3.4 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 183.29, 180.55, 151.45, 139.69, 134.93, 133.25, 132.36, 129.72, 128.05, 127.93, 127.18, 126.55, 126.24, 126.08, 122.84, 116.91; **HRMS** (ESI): calc. for C₁₆H₁₉O₃S [M–H]: 281.0278, found: 281.0250 *m/z*.

 $\label{eq:2-hydroxy-3-(2-(naphthalen-2-yl)vinyl)naphthalene-1,4-dione~(3q)$

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 88% (86.0 mg)Physical appearance: red solid

M.p. 195.6-197.9 °C; ¹**H NMR** (300 MHz, DMSO-*d*₆): δ (ppm) 8.07 (d, *J* = 1.9 Hz, 1H), 8.06-7.99 (m, 3H), 7.99-7.86 (m, 4H), 7.85-7.79 (m, 2H), 7.567.44 (m, 3H); ¹³C **NMR** (75 MHz, CDCl3): δ (ppm) 184.21, 180.97, 151.67, 139.39, 135.34, 135.00, 133.57, 133.26, 132.74, 129.60, 128.41, 128.36, 128.17, 128.06, 127.73, 127.20, 126.44, 126.09, 125.11, 123.48, 118.79, 117.73; **HRMS** (ESI): calc. for C₂₂H₁₃O₃ [M-H]⁻: 325.0870, found: 325.0868 *m/z*.

Figure E33 ¹H-NMR spectrum of **3q** in CDCl₃

Figure E34 ¹³C-NMR spectrum of **3q** in CDCl₃

2-(2-(anthracen-9-yl)vinyl)-3-hydroxynaphthalene-1,4-dione (3r)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 67% (75.6 mg)Physical appearance: dark red solid

M.p. 219.7-221.6 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.80 (d, J = 16.9 Hz, 1H), 8.41 (d, J = 6.0 Hz, 2H), 8.21 (d, J = 7.6 Hz, 1H), 8.15 (d, J = 7.5 Hz, 1H), 8.04-7.97 (m, 2H), 7.86-7.68 (m, 2H), 7.54-7.43 (m, 4H), 7.29-7.20 (m, 2H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 183.81, 180.91, 151.59, 137.16, 136.16, 134.74, 132.85, 132.40, 131.08, 129.83, 129.14, 128.95, 128.29, 126.80, 126.71, 125.74, 125.55, 125.37, 124.82, 118.02; **HRMS** (ESI): calc. for C₂₆H₁₅O₃ [M-H]: 375.1027, found: 375.1029 *m/z*.

2-(2,2-diphenylvinyl)-3-hydroxynaphthalene-1,4-dione (3s)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 48% (49.6 mg)Physical appearance: red solid

M.p. 201.6-202.3 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.04 (dt, J = 7.4, 1.4 Hz, 2H), 7.70 (dtd, J = 18.8, 7.4, 1.5 Hz, 2H), 7.39 – 7.31 (m, 5H), 7.25 – 7.18 (m, 5H), 6.75 (s, 1H); ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) 183.44, 180.51, 151.07, 149.64, 141.99, 140.71, 134.73, 134.41, 132.65, 132.50, 129.03, 128.09, 127.76, 127.59, 127.50, 127.25, 126.43, 125.56, 120.63, 116.20; **HRMS** (ESI): calc. for C₂₄H₁₅O₃ [M–H]⁻: 351.1027, found: 351.1019 *m/z*.

Figure E37 ¹H-NMR spectrum of **3s** in CDCl₃

Figure E38 ¹³C-NMR spectrum of 3s in CDCl₃

2-hydroxy-3-(2-phenylprop-1-en-1-yl)naphthalene-1,4-dione (3t)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 50% (43.5 mg)Physical appearance: red solid

M.p. 141.2-143.6 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.22-8.10 (m, 2H), 7.82-7.71 (m, 2H), 7.60 (d, J = 7.9 Hz, 2H), 7.36 (dt, J = 12.5, 6.6 Hz, 3H), 6.64 (s, 1H), 2.10 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) 184.03, 180.96, 150.78, 143.60, 142.09, 134.51, 132.56, 132.42, 129.10, 127.76, 127.30, 126.50, 125.75, 125.68, 120.35, 115.51, 19.02; **HRMS** (ESI): calc. for C₁₉H₁₃O₃ [M-H]: 289.0870, found: 289.0857 *m/z*.

2-(2-bromo-2-phenylvinyl)-3-hydroxynaphthalene-1,4-dione (3u)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 51% (54.2 mg)Physical appearance: red solid

M.p. 220.5-222.1 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.09-8.01 (m, 1H), 7.80-7.74 (m, 1H), 7.74-7.68 (m, 2H), 7.67-7.61 (m, 1H), 7.50-7.43 (m, 2H), 7.43-7.34 (m, 2H), 6.99 (s, 1H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 179.79, 173.86, 159.15, 156.21, 134.91, 130.06, 129.67, 128.71, 128.50, 128.37, 128.12, 127.89, 123.88, 122.80, 121.68, 102.29; **HRMS** (ESI): calc. for C₁₈H₁₀BrO₃ [M–H]⁻: 353.9819, found: 353.9804 *m/z*.

3-hydroxy-6-methyl-2-styrylnaphthalene-1,4-dione (3v)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 86% (74.8 mg)Physical appearance: red solid

M.p. 192.3-194.1 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.06 (d, J = 7.9 Hz, 1H), 7.97 (d, J = 9.8 Hz, 1H), 7.91 (d, J = 13.7 Hz, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 3.5 Hz, 1H), 7.38 (d, J = 6.1 Hz, 2H), 7.32 (d, J = 7.2 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (75 MHz, CDCl3): δ (ppm) 183.60, 180.75, 151.10, 143.74, 138.65, 137.37, 135.13, 129.96, 128.96, 128.20, 128.09, 126.82, 126.66, 125.94, 117.99, 117.02, 21.13; **HRMS** (ESI): calc. for C₁₉H₁₃O₃ [M-H]: 289.0870, found: 289.0864 *m/z*.

2-(4-chlorostyryl)-3-hydroxy-6-methylnaphthalene-1,4-dione (3w)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 84% (81.6mg)Physical appearance: red solid

M.p. 234.5-235.6 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.08 (d, *J* = 8.0 Hz, 1H), 7.97 (s, 1H), 7.96-7.88 (m, 2H), 7.58 (d, *J* = 8.6 Hz, 1H), 7.54 (d, *J* = 8.7 Hz, 2H), 7.41-7.32 (m, 3H), 2.51 (s, 3H; ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 181.08, 178.41, 151.85, 141.40, 134.89, 133.26, 132.35, 130.98, 128.12, 128.04, 126.22, 125.63, 124.11, 123.29, 116.64, 115.39, 18.11; **HRMS** (ESI): calc. for C₁₉H₁₂ClO₃ [M–H]⁻: 323.0480, found: 323.0475 *m/z*.

Figure E45 ¹H-NMR spectrum of **3w** in CDCl₃

Figure E46¹³C-NMR spectrum of **3w** in THF

2-(4-bromostyryl)-3-hydroxy-6-methylnaphthalene-1,4-dione (3x)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 83% (91.6 mg)Physical appearance: red solid

M.p. 238.4-240.3 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.08 (d, J = 8.2 Hz, 1H), 8.02-7.85 (m, 3H), 7.58 (d, J = 8.8 Hz, 1H), 7.53-7.45 (m, 3H), 7.39 (d, J = 17.2 Hz, 1H), 2.51 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) 181.08, 178.41, 151.89, 141.41, 135.28, 134.72, 133.31, 132.36, 129.22, 128.13, 128.04, 125.91, 124.11, 123.29, 116.71, 115.39, 18.10; **HRMS** (ESI): calc. for C₁₉H₁₂BrO₃ [M–H]⁻: 366.9975, found: 366.9954*m*/*z*.

Figure E48 ¹³C-NMR spectrum of **3x** in THF

2-hydroxy-5-methoxy-3-styrylnaphthalene-1,4-dione (3y)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 83% (76.2 mg)Physical appearance: red solid

M.p. 156.2-157.3 °C; ¹**H NMR** (300 MHz, DMSO-*d*₆): δ (ppm) 7.81 (d, *J* = 16.4 Hz, 1H), 7.76 – 7.68 (m, 1H), 7.62 (d, *J* = 6.8 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 3H), 7.40 (d, *J* = 7.1 Hz, 2H), 7.35 (d, *J* = 5.5 Hz, 1H), 7.30 (d, *J* = 6.0 Hz, 1H), 3.90 (s, 3H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 183.44, 180.78, 159.35, 153.67, 137.76, 135.99, 133.77, 130.94, 128.18, 127.93, 127.34, 126.65, 119.54, 119.02, 117.43, 114.66, 56.09; **HRMS** (ESI⁻): calc. for C₁₉H₁₃O₄ [M⁻H]⁻: 305.0819, found: 305.0800 *m/z*.

Figure E50 ¹³C-NMR spectrum of **3y** in CDCl₃

3-hydroxy-6-methoxy-2-styrylnaphthalene-1,4-dione (3z)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 86% (78.8 mg)Physical appearance: red solid

M.p. 141.3-143.9 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.11 (d, J = 8.6 Hz, 1H), 7.94 (t, J = 14.8 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.53 (d, J = 2.6 Hz, 1H), 7.43 (d, J = 6.9 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.32 (d, J = 7.0 Hz, 1H), 7.23 (dd, J = 8.7, 2.6 Hz, 1H), 3.95 (s, 3H); ¹³C **NMR** (75 MHz, CDCl3): δ (ppm) 183.56, 181.16, 163.56, 151.52, 139.28, 137.87, 131.35, 129.49, 128.71, 128.63, 127.18, 125.99, 120.96, 118.44, 117.60, 109.70, 55.95; **HRMS** (ESI): calc. for C₁₉H₁₃O₄ [M-H]: 305.0819, found: 305.0815 *m/z*.

3-hydroxy-6-methoxy-2-(4-methylstyryl)naphthalene-1,4-dione (3aa)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 89% (85.5 mg)Physical appearance: red solid

M.p. 133.5-136.3 °C; ¹**H** NMR (300 MHz, CDCl₃): δ (ppm) 8.12 (d, J = 11.0 Hz, 1H), 7.96 (d, J = 14.9 Hz, 1H), 7.63-7.44 (m, 3H), 7.38 (d, J = 15.8 Hz, 1H), 7.21 (d, J = 7.2 Hz, 3H), 3.97 (s, 3H), 2.38 (s, 3H); ¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) 183.16, 180.61, 163.04, 150.82, 138.87, 138.31, 134.66, 133.82, 130.91, 128.96, 126.64, 125.51, 120.37, 118.23, 116.14, 109.18, 55.45, 20.89; **HRMS** (ESI⁻): calc. for C₂₀H₁₅O₄ [M-H]⁻: 319.0976, found: 319.0958 *m/z*.

Figure E53 ¹H-NMR spectrum of **3aa** in CDCl₃

Figure E54 ¹³C-NMR spectrum of **3aa** in CDCl₃

2-hydroxy-6,7-dimethoxy-3-styrylnaphthalene-1,4-dione (3ab)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 89% (89.7 mg)Physical appearance: red solid

M.p. 156.2-158.3 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 7.93 (d, J = 16.7 Hz, 1H), 7.59 (s, 2H), 7.51 (s, 1H), 7.40 (d, J = 3.7 Hz, 2H), 7.36 (d, J = 5.4 Hz, 2H), 7.32 (d, J = 7.1 Hz, 2H), 4.07 (s, 3H), 4.04 (s, 3H); ¹³C **NMR** (75 MHz, CDCl3): δ (ppm) 183.38, 179.74, 153.97, 152.31, 151.14, 137.90, 137.43, 133.82, 128.20, 127.98, 127.37, 126.58, 125.48, 117.03, 108.47, 107.03, 56.10, 56.03; **HRMS** (ESI⁻): calc. for C₂₀H₁₅O₅ [M⁻H⁻]: 335.0925, found: 335.0900 *m/z*.

6-chloro-3-hydroxy-2-styrylnaphthalene-1,4-dione (3ac)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 84% (78.1 mg)Physical appearance: red solid

M.p. 208.3-209.2 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.13 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 13.1 Hz, 1H), 7.93 (d, J = 20.8 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 6.5 Hz, 2H), 7.41 (d, J = 6.4 Hz, 2H), 7.39-7.28 (m, 2H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 182.71, 179.58, 151.01, 139.65, 139.48, 137.16, 134.81, 134.26, 130.37, 130.25, 128.35, 128.25, 126.75, 125.44, 118.60, 116.66; **HRMS** (ESI⁻): calc. for C₁₈H₁₀ClO₃ [M⁻H]⁻: 309.0324, found: 309.0325 *m/z*.

Figure E57 ¹H-NMR spectrum of **3ac** in CDCl₃

Figure E58 ¹³C-NMR spectrum of **3ac** in CDCl₃

6-chloro-3-hydroxy-2-(4-methylstyryl)naphthalene-1,4-dione (3ad)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 85% (82.6 mg)Physical appearance: red solid

M.p. 232.5-234.8 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.13 (d, J = 9.6 Hz, 1H), 8.08-7.85 (m, 2H), 7.73 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.36 (dd, J = 16.9, 2.2 Hz, 1H), 7.21 (d, J = 6.6 Hz, 2H), 2.39 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) 182.52, 179.22, 153.52, 138.65, 137.70, 137.53, 135.29, 133.37, 131.58, 129.85, 128.75, 127.85, 126.32, 124.56, 118.51, 116.55, 19.95; **HRMS** (ESI⁻): calc. for C₁₉H₁₂ClO₃ [M–H]⁻: 323.0480, found: 323.0475 *m/z*.

E49

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 82% (95.4 mg)Physical appearance: red solid

M.p. 238.7-239.2 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.13 (d, J = 8.1 Hz, 1H), 8.07 (d, J = 1.9 Hz, 1H), 7.96-7.87 (m, 2H), 7.74 (dd, J = 8.4, 2.6 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 7.5 Hz, 1H), 7.37 (d, J = 16.5 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 182.35, 179.59, 151.43, 139.05, 137.98, 136.26, 134.57, 134.38, 131.43, 129.45, 128.37, 128.13, 125.51, 122.34, 117.31, 115.42; **HRMS** (ESI⁻): calc. for C₁₈H₉BrClO₃ [M–H]⁻: 386.9429, found: 386.9425 *m/z*.

Figure E61 ¹H-NMR spectrum of **3ae** in CDCl₃

Figure E62¹³C-NMR spectrum of **3ae** in CDCl₃

6-bromo-3-hydroxy-2-styrylnaphthalene-1,4-dione (3af)

Purification: flash chromatography on silica gel (CH₂Cl₂/MeOH : 500/1)Yield: 83% (87.9 mg)Physical appearance: red solid

M.p. 214.9-216.1 °C; ¹**H NMR** (300 MHz, CDCl₃): δ (ppm) 8.23 (s, 1H), 7.94 (dd, J = 13.4, 2.2 Hz, 1H), 7.89 (d, J = 1.5 Hz, 1H), 7.68 (d, J = 121.5 Hz, 1H), 7.61 (d, J = 6.2 Hz, 2H), 7.41 (d, J = 5.6 Hz, 2H), 7.38-7.31 (m, 2H); ¹³**C NMR** (75 MHz, CDCl3): δ (ppm) 183.77, 180.53, 151.00, 134.75, 134.37, 133.69, 132.65, 132.26, 129.36, 129.13, 126.63, 126.43, 126.27, 125.50, 118.82, 117.22; **HRMS** (ESI): calc. for C₁₈H₁₀BrO₃ [M–H]: 352.9819, found: 352.9813 *m/z*.

Figure E64 ¹³C-NMR spectrum of **3af** in CDCl₃

7 Reference

[1] A. C. Baillie, R. H. Thomson, J. Chem. Soc. Sec. 1966, 2184. [2] H. -J. Nie, J. -N. Yao, Y. -W. Zhong, J. Org. Chem. 2011, 76, 771-4775 [3] T. Inui, H. Matsuda, Y. takegami, J.C.S. Chem. Comm. 1981, 676, 906-907.