Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Nidhi Tyagi,^a Ovender Singh,^a Udai P. Singh,^a Kaushik Ghosh,^a*

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee–247667, Uttarakhand INDIA.

Fig. S1. IR Spectra of the complexes 1 and 2

Fig. S2. ESI-MS spectra of complexes (A) 1 and (B) 2

Fig. S3. ¹³C NMR spectra of Gimpy and complex 2

Fig. S4. ¹H NMR spectra of ligand (Gimpy) and complex 2

Fig. S5. In-situ UV-Visible spectral changes of complex 2 in presence of acidified NaNO₂

Fig. S6. In-situESI-MS spectra of iron-nitrosyl complex [Fe(Gimpy)(NO)(CN)]²⁺, 4. 504

Fig. S7. Comparison of orientation of phenyl rings in (a)[Fe(Gimpy)(CN)₂] \cdot 3H₂O and (b)[Fe(Gimpy-NO₂)(CN)₂] \cdot CH₂Cl₂

Fig. S8. Packing diagram of the complex 2

Fig. S9. Geometry optimized structure of complexes 2 and 3.

Fig. S10. Frontier orbitals diagram for the HOMO, HOMO-1, HOMO-2 and LUMO, LUMO+1, LUMO+2, for the complex **2** and **3**.

Fig. S11. UV-vis spectra of the complexes 2 and 3 obtained from TD-DFT calculation.

Fig. S12. Frontier orbitals diagram for ligand, Gimpy.

 Table S1. Crystallographic parameters of the complexes 2 and 3

Table S2. Electrochemical data for Fe(III)/Fe(II) redox couple at 298 K^a vs Ag/AgCl.

 Table S3. Cartesian coordinates for complex [Fe(Gimpy)(CN)₂]

Table S4. Cartesian coordinates for complex [Fe(Gimpy-NO₂)(CN)₂]

Table S5. Bond distances (Å) and bond angles (°) for complexes **2** and **3** with optimized DFT bond parameters in gas.

Table S6. Calculated TD-DFT oscillator strengths (f) and nature of transitions in the complexes 2 and 3

Table S7. Percentage orbitals contribution of complex [Fe(Gimpy)(CN)₂]

Table S8. Percentage orbitals contribution of complex [Fe(Gimpy-NO₂)(CN)₂]

Table S9. Percentage contribution for ligand, Gimpy

Fig. S1. IR Spectra of the complexes 1 and 2

Fig.S2.ESI-MS spectra of complexes (A) 1 and (B)2.

Fig. 3. ¹³C NMR spectra of Gimpy and complex 2.

(b)

Fig.S4.¹H NMR spectra of (a) ligand (**Gimpy**), (b) complex **2** and (c) expanded ¹H NMR spectra of ligand and complex **2**.

Fig. S5. In-situ UV-Visible spectral changes of complex 2 in presence of acidified NaNO₂

Fig. S6. In-situ ESI-MS spectra of iron-nitrosyl complex [Fe(Gimpy)(NO)(CN)]²⁺, 4. 504

Fig. S7. Comparison of orientation of phenyl rings in **(a)**[Fe(**Gimpy**)(CN)₂]·3H₂O and **(b)**[Fe(**Gimpy**-NO₂)(CN)₂]·CH₂Cl₂

Fig. S8. Packing diagram of complex2along c axis

Fig. S9. Geometry optimized structure for complexes 2 and 3

номо

LUMO

LUMO+1

НОМО-2

LUMO+2

(a)

Fig. S10.Frontier orbitals diagram for the HOMO, HOMO-1, HOMO-2, and LUMO, LUMO+1, LUMO+2, of (a) complex **2(b)** complex **3**.

Fig. S11. UV-vis spectra of complexes a)2 and b) 3 obtained from TD-DFT calculation

Fig. S12.Frontier orbitals diagram for ligand, Gimpy.

Complex	Complex 2	Complex 3		
Colour	purple	green		
Formula weight [g mol ⁻	554.40	661.31		
Temperature [K]	293(2)	293(2)		
λ [Å] (Mo-Kα)	0.71073	0.71073		
Crystal system	orthorhombic	Triclinic		
Space group	Pn21a	P -1		
a [Å]	16.979(5)	9.885(4)		
b [Å]	15.130(5)	12.712(5)		
c [Å]	10.163(5)	13.207(5)		
α [°]	90.000(5)	94.82(2)		
β [°]	90.000(5)	111.057(19)		
γ [°]	90.000(5)	101.56(2)		
V [Å ³]	2610.8(17)	1495.1(11)		
Crystal size[mm]	0.28 x 0.19 x 0.10	0.29 x 0.19 x 0.11		
Ζ	4	2		
ρcalc [gcm ⁻³]	1.373	1.469		
F(000)	1152.0	678		
θ range for data	2.34-28.33	1.66-22.88		
Collection				
Index ranges	-22 <h<22,< th=""><th>-10<h<10,< th=""></h<10,<></th></h<22,<>	-10 <h<10,< th=""></h<10,<>		
	-19 <k<19, -13<l<13<="" th=""><th>-13<k<13, -14<l<14<="" th=""></k<13,></th></k<19,>	-13 <k<13, -14<l<14<="" th=""></k<13,>		
Refinement method	Full matrix least-squares on	Full matrix least-squares		
	F ²	on F ²		
Data/restraints/paramet	6180/1/375	3809/0/384		
ers	0.010	1.007		
GOF on F ²	0.813	1.085		
$\frac{\mathbf{R}_{1}^{\mathbf{b}}[\mathbf{l} \geq 2\sigma(\mathbf{l})]}{\mathbf{k}_{1}^{\mathbf{b}}[\mathbf{l} \geq 2\sigma(\mathbf{l})]}$	0.0367	0.0842		
R ₁ [all data]	0.0582	0.1754		
$wR_2^c[I > 2\sigma(I)]$	0.0964	0.2154		
$ WR_2 [all data]$	0.1160	0.2650		
${}^{a}\text{GOF} = \left[\sum \left[w(F_{o}^{2}-F_{c}^{2})^{2}\right]/M$	N)] ^{1/2} (M = number of reflection	s, $N =$ number of parameters		
refined). ${}^{b}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} $, ${}^{c}wR_{2} = [\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}$				

Table S1.Crystallographic parameters of complex 2 and 3

Complex	Fe(III)/Fe(II)			
	E _{pa} /V	E _{pc} /V	$E_{1/2}^{b}$, V (ΔE_{p}^{c} , mV)	
1	-0.082	-0.435	-	
2	0.860	0.703	0.782 (157)	
3	1.210	1.120	1.165 (90)	

Table S2.Electrochemical data for Fe(III)/Fe(II) redox couple at 298 K^avsAg/AgCl

^ameasured in dichloromethane for **1**, **2** and **3** with 0.1 M tetrabutylammonium perchlorate (TBAP).^bData from cyclic voltammetric measurements; $E_{1/2}$ is calculated as average of anodic (E_{pa}) and cathodic (E_{pc}) peak potentials $E_{1/2} = 1/2(E_{pa}+E_{pc})$; and ^c $\Delta E_p = E_{pa}-E_{pc}$ at scan rate 0.1 V/s.

Table S3: Cartesian coordinates for complex [Fe(Gimpy)(CN)₂]

Atom types=4

```
Charge=26.0 Atoms=1
```

Fe	0.000099000	0.732841000	0.000149000				
Charge=7.0 Atoms=8							
N	1.728058000	1.817882000	0.009819000				
N	2.575749000	-0.372278000	0.005649000				
Ν	1.229650000	-0.688409000	0.004019000				
Ν	-1.229400000	-0.688460000	-0.003171000				
N	-2.575501000	-0.372380000	-0.005201000				
Ν	-1.727912000	1.817820000	-0.010061000				
N	0.015529000	0.974061000	-3.143391000				
Ν	-0.019011000	0.977331000	3.143389000				
Cha	rge=6.0 Atoms=	26					
С	0.010789000	0.879341000	-1.954611000				
С	-0.011101000	0.880631000	1.954789000				
С	1.909508000	3.158572000	0.016469000				
С	3.176358000	3.755702000	0.021079000				

С	4.308628000	2.917163000	0.018999000
С	4.140749000	1.527033000	0.013429000
С	2.828919000	1.007752000	0.009389000
С	-1.909432000	3.158490000	-0.017131000
С	-3.176312000	3.755569000	-0.022141000
С	-4.308542000	2.916979000	-0.019991000
С	-4.140591000	1.526849000	-0.013931000
С	-2.828741000	1.007630000	-0.009511000
С	-0.721850000	-1.913159000	-0.000801000
С	0.722160000	-1.913139000	0.002089000
С	5.075341000	-2.892997000	1.209839000
С	4.088370000	-1.890017000	1.220919000
С	3.600850000	-1.386938000	-0.001261000
С	4.080340000	-1.880477000	-1.230561000
С	5.067271000	-2.883507000	-1.233721000
С	-4.087580000	-1.890401000	-1.220761000
С	-3.600560000	-1.387081000	0.001519000
С	-4.080510000	-1.880411000	1.230719000
С	-5.067399000	-2.883481000	1.233689000
С	-5.564499000	-3.388782000	0.015369000
С	-5.074529000	-2.893401000	-1.209871000
С	5.564861000	-3.388577000	-0.015511000
Cha	rge=1.0 Atoms=	20	
Н	1.011128000	3.761691000	0.018849000

Н	3.267887000	4.836192000	0.026219000
11	5.20/00/000	4.050172000	0.02021/000

Η	5.309448000	3.339903000	0.022159000
H	4.992549000	0.857533000	0.012469000
Н	-1.011092000	3.761670000	-0.019501000
Η	-3.267893000	4.836049000	-0.027611000
Η	-5.309382000	3.339648000	-0.023441000
Η	-4.992361000	0.857309000	-0.012861000
Η	5.458511000	-3.283857000	2.148719000
Η	3.696170000	-1.496707000	2.155369000
Η	3.681960000	-1.479857000	-2.159271000
Η	5.444231000	-3.267027000	-2.178121000
Η	-3.695020000	-1.497251000	-2.155121000
Η	-3.682500000	-1.479601000	2.159519000
Η	-5.444709000	-3.266852000	2.178009000
Η	-6.327329000	-4.163382000	0.020729000
Η	-5.457319000	-3.284452000	-2.148831000
Η	6.327721000	-4.163146000	-0.021021000
Η	-1.316989000	-2.818400000	-0.000631000
Н	1.317331000	-2.818349000	0.002119000

Table S4: Cartesian coordinates for complex [Fe(Gimpy-NO₂)(CN)₂]

Atom types=5

Charge=26.0 Atoms=1

Fe -0.109501000 0.910856000 -0.119861000

Charge=8.0 Atoms=2

O 2.345968000 -2.852464000 -1.510872000

O 0.641445000 -4.012520000 -0.560680000

Charge=7.0 Atoms=9

N	1.130481000	-0.456366000	-0.419574000
N	2.467333000	-0.112732000	-0.407177000
N	-1.335973000	-0.513058000	-0.044317000
N	-2.662003000	-0.207827000	0.175303000
N	-1.785594000	1.960471000	0.377823000
N	1.243588000	-2.911311000	-0.854975000
N	0.593110000	0.857848000	2.948424000
N	-0.938494000	1.522902000	-3.091251000
N	1.520544000	2.050879000	-0.403349000

Charge=6.0 Atoms=26

С	1.618133000	3.394937000	-0.538458000
С	2.848793000	4.046938000	-0.674143000
С	4.022866000	3.267704000	-0.677479000
С	3.929896000	1.873781000	-0.576536000
С	2.652099000	1.295228000	-0.455728000
С	0.584361000	-1.682567000	-0.488510000
С	-0.846869000	-1.713290000	-0.278622000
С	-2.889227000	1.157100000	0.412807000
С	-4.174721000	1.665397000	0.690232000
С	-4.306786000	3.034059000	0.954566000
С	-3.164894000	3.860349000	0.947633000
С	-1.926248000	3.277713000	0.655314000
С	3.491568000	-0.955812000	0.204303000

С	3.390769000	-1.224477000	1.583590000
С	4.396721000	-1.991905000	2.199272000
С	5.489614000	-2.465583000	1.447664000
С	5.577360000	-2.180018000	0.070244000
С	4.571888000	-1.427231000	-0.559259000
С	-3.702976000	-1.203113000	0.062739000
С	-4.087638000	-1.940015000	1.199004000
С	-5.085961000	-2.924005000	1.075171000
С	-5.687081000	-3.165807000	-0.176289000
С	-5.290929000	-2.426019000	-1.308867000
С	-4.293252000	-1.440957000	-1.194311000
С	0.301810000	0.890932000	1.793343000
С	-0.596908000	1.272476000	-1.977739000
Cha	arge=1.0 Atoms=	19	
Н	0.685095000	3.943325000	-0.551951000
H	2.882859000	5.126030000	-0.775431000
H	4.997374000	3.737693000	-0.772670000
H	4.813639000	1.249126000	-0.592802000
H	-1.417678000	-2.629968000	-0.331012000
H	-5.032423000	1.003747000	0.700953000
H	-5.286790000	3.449207000	1.171836000
H	-3.228784000	4.920610000	1.165081000
Н	-1.017274000	3.865277000	0.656963000
H	2.559776000	-0.825906000	2.161541000

Н 4.329868000 -2.205116000 3.262657000

Η	6.264840000	-3.056028000	1.929654000
Н	6.411829000	-2.558068000	-0.514087000
Н	4.595918000	-1.241716000	-1.628357000
Н	-3.609853000	-1.742378000	2.155131000
Н	-5.389042000	-3.498264000	1.946394000
Н	-6.455992000	-3.928511000	-0.269331000
Н	-5.751651000	-2.616994000	-2.274200000
Н	-3.969270000	-0.864992000	-2.057568000

Table S5. Selected bond distances (Å) for complexes 2 and 3 with optimized DFT bond parameters in gas phase.

Bond distances (Å)					
	Complex 2		Complex 3		
Fe1-N6	2.04042	Fe1-N1	2.00924		
Fe1-N4	1.87929	Fe1-N3	1.86994		
Fe1-N3	1.87930	Fe1-N4	1.88082		
Fe1-N1	2.04041	Fe1-N6	2.03928		

Table S6. Calculated TD-DFT oscillator strengths (f) and nature of transitions in the complexes 2 and 3

	$\lambda_{max}(nm)$	f	Transition	Significant	Energy for
				contribution	transition
Complex 2	370	0.2274	HOMO-1 → LUMO+1	19.6%	3.3466eV
	609	0.0210	HOMO-1 → LUMO	70%	2.0350 eV
			HOMO-2 🔸 LUMO	2.2%	
	484	0.0691	HOMO 🔶 LUMO	11%	2.5615 eV
			HOMO-3 🔶 LUMO	42%	
Complex 3	430	0.0721	HOMO → LUMO+1	63%	2.8806 eV
			HOMO-1 🔶 LUMO	3.2%	
	326	0.1120	HOMO → LUMO+1	2.14%	3.7927 eV

Orbitals	Fe	CN-1	CN-2	Py-1	Py-2	Ph-1	Ph-2	Nimi-1	Nimi-2	Main bond type
LUMO+3	2	0	0	34	33	13	14	2	2	d(Fe)+ π *(L)
LUMO+2	0	0	0	0	0	48	46	2	2	π*(L)
LUMO+1	1	0	0	37	38	11	11	1	1	d(Fe)+ π *(L)
LUMO	9	3	3	14	14	0	0	28	28	$d(Fe)+\pi^*(L)$
НОМО	51	3	3	6	6	0	0	15	15	$d(Fe)+\pi(L)$
НОМО-1	65	10	10	1	1	0	0	6	6	$d(Fe)+\pi(L)$
НОМО-2	84	2	2	3	3	1	1	2	2	$d(Fe)+\pi(L)$
НОМО-3	18	13	13	11	11	1	1	15	15	d(Fe)+ π(L)

Table S7. Percentage orbitals contribution of complex [Fe(Gimpy)(CN)₂]

Table S8. Percentage orbitals contribution of complex [Fe(Gimpy-NO₂)(CN)₂]

Orbitals	Fe	CN-1	CN-2	Py-1	Py-2	Ph-1	Ph-2	NO2	Nimi-1	Nimi-2	Main bond
											type
LUMO+3	2	0	0	61	21	8	0	1	2	5	$d(Fe)+\pi^*(L)$
LUMO+2	2	0	0	23	70	2	1	0	1	1	$d(Fe) + \pi^*(L)$
LUMO+1	3	1	1	17	6	0	1	31	7	32	$d(Fe)+\pi^*(L)$
LUMO	12	2	2	2	6	0	1	45	27	3	$d(Fe)+\pi^*(L)$
НОМО	42	3	2	9	4	1	1	4	13	20	$d(Fe)+\pi(L)$
НОМО-1	65	11	10	1	3	0	1	1	8	5	$d(Fe)+\pi(L)$
НОМО-2	51	15	10	7	5	1	1	0	6	6	$d(Fe)+\pi(L)$
НОМО-3	52	6	5	10	6	1	5	0	6	9	$d(Fe)+\pi(L)$

 Table S9.Percentage contribution of ligand, Gimpy

Orbitals	Nimine1	Nimine2	Phenyl1	Phenyl2	Pyridine1	Pyridine2
LUMO+2	4	4	13	13	33	33
LUMO+1	1	1	7	7	43	43
LUMO	32	32	0	0	17	17
HOMO	34	34	1	1	15	15
HOMO-1	26	26	1	1	23	23
HOMO-2	17	17	25	25	8	8