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Figure S1. XRD pattern of the pure-phase of NiS, precursor.



Figure S2. SEM images of the nickel sulfide hollow micropheres without carbon-

coating.
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Figure S3. Raman spectrum of Ni;S4@C hollow microspheres. As shown in this
image, the two major Raman bands are located at 1350 and 1600 cm™'. The band
located at 1600 cm™'corresponds to the G peak from the breathing motion of sp? rings,
while the one located at 1350 cm™' is in good agreement with the D band, which is
generally associated with a double-resonance effect. The value Ip/Ig can be used to
evaluate the degree of disorder for pyrolytic carbon, and the measured Ip/lg intensity

ratio is approximate 2.3, indicating the amorphous phase is a major component of the

carbon layer.
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Figure S4. N, adsorption/desorption isotherms (a) and the corresponding pore size

distribution (b) of the Ni;S4@C hollow microspheres.
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Figure S5. TGA curve of Ni;S;@C hollow microspheres under O, atmosphere from

the room temperature to 900 °C.



Figure S6. SEM image of Ni;S;@C hollow microspheres after 100 cycles at a current

density of 0.1C.
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Figure S7. Li-ion storage performance of Ni;S4@C hollow microspheres and bare

Ni;S4 hollow microspheres at a current density of 0.1C (about 100 mA g!). The bare

Ni3S; hollow microspheres

I L 1 L I

40 60 80
Cycle number

WwEre

crystallization route, while no using of glucose as the carbon source.
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synthesized via the similar hydrothermal
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Figure S8. EIS spectra of NizS4@C hollow microspheres and bare Ni3;S4 hollow

microspheres.



