Supporting Information

In-situ carbon-coating and Ostwald ripening-based route for

Ni₃S₄@C hollow spheres with superior Li-ion storage performances

Shaomin Ji,^{a,*} Liguo Zhang,^c Litao Yu,^c Xijun Xu,^b Jun Liu^{b,*}

^aSchool of Chemical Engineering and Light Industry, Guangdong University of

Technology, Guangzhou, 510006, China.

Email: smji@gdut.edu.cn

^bSchool of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China.

Email: msjliu@scut.edu.cn

^cSchool of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China.

Figure S1. XRD pattern of the pure-phase of NiS_2 precursor.

Figure S2. SEM images of the nickel sulfide hollow micropheres without carboncoating.

Figure S3. Raman spectrum of Ni_3S_4 @C hollow microspheres. As shown in this image, the two major Raman bands are located at 1350 and 1600 cm⁻¹. The band located at 1600 cm⁻¹corresponds to the G peak from the breathing motion of sp³ rings, while the one located at 1350 cm⁻¹ is in good agreement with the D band, which is generally associated with a double-resonance effect. The value I_D/I_G can be used to evaluate the degree of disorder for pyrolytic carbon, and the measured I_D/I_G intensity ratio is approximate 2.3, indicating the amorphous phase is a major component of the carbon layer.

Figure S4. N_2 adsorption/desorption isotherms (a) and the corresponding pore size distribution (b) of the Ni₃S₄@C hollow microspheres.

Figure S5. TGA curve of $Ni_3S_4@C$ hollow microspheres under O_2 atmosphere from the room temperature to 900 °C.

Figure S6. SEM image of $Ni_3S_4@C$ hollow microspheres after 100 cycles at a current density of 0.1C.

Figure S7. Li-ion storage performance of $Ni_3S_4@C$ hollow microspheres and bare Ni_3S_4 hollow microspheres at a current density of 0.1C (about 100 mA g⁻¹). The bare Ni_3S_4 hollow microspheres were synthesized via the similar hydrothermal crystallization route, while no using of glucose as the carbon source.

Figure S8. EIS spectra of $Ni_3S_4@C$ hollow microspheres and bare Ni_3S_4 hollow microspheres.