Supporting Information

Biaxial strain effect on electronic structures tuning in antimonene-based van der Waals heterostructures

Hao Lu,^a Junfeng Gao,^b Ziyu Hu,^{*a,c} and Xiaohong Shao^{*a}

^aCollege of Science, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China

^bInstitute of High Performance Computing, A*STAR, 138632, Singapore

^cBeijing Computational Science Research Center, Beijing, 100094, People's Republic of China

*Correspondence and requests for materials should be addressed to Z.Y.H (<u>huziyu@csrc.ac.cn</u>) and X.H.S (<u>shaoxh@mail.buct.edu.cn</u>)

Figure. S1. (a) The side view and top view of antimonene, graphene, h-BN and arsenene monolayers atomic structures. Brilloun zone and specific symmetry points are listed on the top viewed monolayers atomic structures. (b) The calculated band structures with the PBE functional.

Figure. S2 Calculated band alignment for results of the CBMs (VBMs) positions for the graphene, h-BN, arsenene, antimonene, and the corresponding antimonene-based heterostructures: G/Sb, h-BN/Sb, and As/Sb. The vacuum level is taken as zero reference.

Figure. S3 The corresponding charge densities of vdW heterostructures are shown in (a) h-BN-Sb (b) As-Sb (the isosurface values are $0.0035e/Å^{-3}$, and $0.00085e/Å^{-3}$ respectively). The CBMs in red isosurfaces (upper panel), and the VBMs in yellow isosurfaces (lower panel).

Figure. S4 The amount of charge transfer of G/Sb heterostructures under biaxial strain of 0%-20%.

Figure. S5 The energy difference between h-BN/Sb heterostructures under biaxial strain of 0%-20%.