Electronic Supplementary Information

Flexible humidity sensors composed of graphite-like carbon micropinecone arrays

Tomohiko Nakajima,* Takako Nakamura and Tetsuo Tsuchiya

Advanced Coating Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Temperature variations during laser irradiation can be described by the heat diffusion equation simplified to describe one-dimensional heat flow:¹

$$\rho C \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2} + \alpha I(z, t)$$

where *T* is the temperature function at time *t* and depth *z*, ρ is the mass density, *C* is the specific heat capacity, α is the optical absorption coefficient, κ is the thermal conductivity, and *I*(*z*,*t*) is the laser power density. The laser power *I*(*z*,*t*) is given by:

 $I(z,t) = I_0(t) \cdot (1-r) \cdot \exp(-\alpha z)$

where *r* is the reflectance. The contribution from the incremental absorbance of the films caused by reflectance at the substrate surface was also included in the laser power distribution. $I_0(t)$ is described as a smooth pulse approximated by:

$$I_{0}(t) = I_{0} \cdot \left(\frac{t}{\tau}\right)^{\beta} \cdot \exp\left(\beta\left(1 - \frac{t}{\tau}\right)\right)$$

where I_0 is the incident pulse power density, τ is the pulse duration (KrF: 26 ns), and β determines the temporal pulse shape (KrF: 6.0). We carried out numerical simulations for the temperature variation for the excimer laser irradiation process using a difference approximation based on the above equations. The initial conditions were T = 25 °C at t = 0 s and T = 25 °C at the bottom of the substrate. The boundary condition was

 $[\]kappa \frac{\partial T}{\partial \tau} = 0$ at the interfaces. The physical constants used in the calculations are listed in Table S1.

_	Material	lpha / cm ⁻¹	r	$\kappa/\operatorname{Wcm}^{-1}\operatorname{K}^{-1}$	ho / g cm ⁻³	$C / \operatorname{Jg}^{-1} \operatorname{K}^{-1}$
	Polyimide	2.6×10 ⁵	0.09	1.2×10 ⁻³	1.42	1.09
	Graphite	1.776×10 ⁴	0.0377	1.124	2.26	0.72
	SiO ₂	0.83	0.08	0.015	2.20	0.67

Figure S2 shows the monitoring setup for the humidity sensing property under various gas flow: humidified/dried N_2 , O_2 and H_2/Ar . The humidity source was made from water bubbling.

Fig. S2: The FESEM images for the CMP arrays prepared at 200 mJ·cm⁻² and schematic illustration of CMP arrays.

Fig. S4: The time course of normalized R for CMC and CMC-M (M: Pd, Pt and Au). The dotted line represents normalized RH curve monitored by commercial humidity sensor. In the time course measurements, the gas flow was changed as follows: dried N_2 (0–30 s) – humidified N_2 (30–210 s) – dried N_2 (210–360 s).

Fig. S5: The time course of normalized *R* for CMP and CMP-M (M: Pd, Pt and Au). The dotted line represents normalized RH curve monitored by commercial humidity sensor. In the time course measurements, the gas flow was changed as follows: dried N_2 (0–30 s) – humidified N_2 (30–210 s) – dried N_2 (210–360 s).

References

- 1 D. Bäuerle,: Laser Processing and Chemistry (Springer-Verlag Berlin Heidelberg New York 2000)
- 2 http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summaryof-properties.pdf
- 3 https://www.entegris.com/resources/assets/6205-7329-0513.pdf.
- 4 T. Nakajima, T. Tsuchiya and T. Kumagai, Cryst. Growth Des., 2010, 10, 4861.
- 5 Materials Safety Data Sheet Solution Center: http://www.msds.com/.