Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Photochemical synthesis of CeO₂ nanoscale particles using sodium azide as a photoactive material: Effects of the annealing temperature and polyvinylpyrrolidone addition

Eva Raudonyte-Svirbutaviciene^a, Lina Mikoliunaite^b, Audrius Drabavicius^c,

Remigijus Juskenas^c, Simas Sakirzanovas^d, Thomas Jüstel^{e,*}, Arturas Katelnikovas^{a,*}

^a Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

^b Department of Physical Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

^c Department of Characterization of Materials Structure, Institute of Chemistry, Center for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania

^d Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

^e Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, D-48565 Steinfurt, Germany

* Corresponding authors: Tel.: +49 2551962205; fax: +49 2551962502; E-mail: tj@fh-muenster.de (T. Jüstel) Tel: +370 697 23123; E-mail: arturas.katelnikovas@chf.vu.lt (A. Katelnikovas)

Figure s1. pH as a function of VUV irradiation time of 0.024 mol/L NaN₃ solution.

The initial pH of $0.024 \text{ mol/L NaN}_3$ solution was 9.5. This solution was acidified with acetic acid to pH = 4.6 and only then the irradiation with VUV was started. The acidification was performed in order to better observe the pH change.