Supporting Information

Secondary Polarization in Electrorheological Phenomenon

Xiaosong Guo, Xiaoguang Yu, Yulu Chen, Zijia Feng, Qinglin Li, Zhenheng Sun, Guicun Li, Chuncheng Hao*, Qingquan Lei

Laboratory of Functional and Biological Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061,

China

*E-mail: <u>clx@qust.edu.cn</u>.

Fax: 86-532-84022814. Tel: 86-532-84022632

Figure S1. XRD of hollow TiO₂ nanospheres with different size of SiO₂ core.

Figure S1 shows the XRD of synthesized hollow TiO_2 nanospheres with different size of SiO_2 core. No characteristic peak is detected, indicating that both the SiO_2 and TiO_2 are amorphous. The broad peak around 23° gradually shifts to 26° (the broad peak of amorphous TiO_2), which is attributed to the decrease of silica content in SiO_2/TiO_2 composites. With the increasing content of TiO_2 , the broad peak of amorphous TiO_2 at 26° becomes more prominent.

Figure S2. Nitrogen adsorption and desorption isotherms of the hollow TiO₂ nanospheres.

Figure S3. Permittivity (ϵ') as a function of frequency for (a) ER fluid–500 and pure silicone–

Figure S4. The photographs of hollow TiO_2 nanospheres, LDPE and hollow TiO_2 nanospheres/LDPE composite and the schematic of the formation of hollow TiO_2 nanospheres/LDPE composite.

Figure S5. Permittivity (ϵ') as a function of frequency for pure LDPE and TiO₂/LDPE.