Supplementary data

Magnetic zinc oxide nanoflower-assisted ionic liquid-based nanofluid dispersive liquid-liquid microextraction for the rapid determination of acaricides in tea infusions

Miyi Yang, Haozhe Zeng, Xiaoling Wu, Xiaoling Yang, Wenfeng Zhou, Sanbing Zhang, Runhua Lu, Jing Li, Haixiang Gao*

Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China

Corresponding author. Tel.: +86 010 62835140; fax: +86 010 62835140.

E-mail address: hxgao@cau.edu.cn

Fig S1. Photograph of the ZnO@Fe₃O₄ nanofluid

		Factors		
Standard order	Ratio of nanoparticles	Mass of Nanofluid (mg)	Amount of magnetic sorbent (mg)	Average recovery (%)
1	0.1%	20	10	43.9
2	0.1%	30	15	49.9
3	0.1%	40	20	58.1
4	0.1%	50	25	53.4
5	0.1%	60	30	60.3
6	0.2%	20	15	53.9
7	0.2%	30	20	56.3
8	0.2%	40	25	70.5
9	0.2%	50	30	67.4
10	0.2%	60	10	65.4
11	0.5%	20	20	66.8
12	0.5%	30	25	80.6
13	0.5%	40	30	83.5
14	0.5%	50	10	88.3
15	0.5%	60	15	87.6
16	1%	20	25	79.3
17	1%	30	30	88.9
18	1%	40	10	92.2
19	1%	50	15	100.2
20	1%	60	20	100.0
21	1.2%	20	30	73.3

22	1.2%	30	10	78.2
23	1.2%	40	15	86.1
24	1.2%	50	20	90.3
25	1.2%	60	25	87.6
K_1	53.13	63.47	73.61	
K_2	62.69	70.78	75.54	
K ₃	81.37	78.07	74.31	
K_4	92.14	79.93	74.28	
K ₅	83.12	80.19	74.70	
R	39.01	16.72	1.93	

Table S1. Results for the orthogonal experiments

Fig S2. Effects of the types of dispersive solvent on the recoveries. The extraction conditions were as follows: extractant: 50mg [OMIMM]NTF₂ based nanofluid (1%); magnetic adsorbent, 15mg; vortex time, 2 min; dispersive volume, 200 μ L; no salt addition, concentration level, 50 μ g L⁻¹; error bars, standard deviation (n=3).

Fig S3. Effects of the volume of dispersive solvent on the recoveries. The extraction conditions were as follows: extractant: 50mg [OMIMM]NTF₂ based nanofluid (1%); magnetic adsorbent, 15mg; vortex time, 2 min; dispersive solution, methanol; no salt addition, concentration level, 50 μ g L⁻¹; error bars, standard deviation (n=3).

Fig S4. Effects of the volume of desorption solvent on the recoveries. The extraction conditions were as follows: extractant: 50mg [OMIMM]NTF₂ based nanofluid (1%); magnetic adsorbent, 15mg; vortex time, 2 min; dispersive solvent, 150 μ L methanol; desorption solvent, acetonitrile; no salt addition; concentration level, 50 μ g L⁻¹; error bars, standard deviation (n=3).

Fig S5. Effects of the ionic strength on the recoveries. The extraction conditions were as follows: extractant: 50mg [OMIMM]NTF₂ based nanofluid (1%); magnetic adsorbent, 15mg; vortex time, 2 min; dispersive solution, 150 μ L methanol; no salt addition; concentration level, 50 μ g L⁻¹; error bars, standard deviation (n=3).