
Supplementary information

Controlling deposition of nanoparticles by tuning surface charge of SiO2 by surface 
modifications.

Johnas Eklöf1, Tina Gschneidtner1, Samuel Lara-Avila2, Kim Nygård3 and Kasper Moth-Poulsen1

1Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, 
Sweden.
2Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg SE-412 96, 
Sweden.

3Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.

Figure S1: molecules used to chemically functionalize the surfaces. To the left, 3-Aminopropyl)-triethoxysilane (APTES). To the 
right, poly-L-lysine hydro bromide.

Figure S2: Morphological AFM images. Scale bar is 10 µm A: Si/SiO2 coated with 3-Aminopropyl)-triethoxysilane (APTES), B: 
Si/SiO2 coated with, poly-L-lysine hydro bromide and C: Bare Si/SiO2.

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2016



Figure S3: Potential AFM images. Scale bar is 10 µm A: Si/SiO2 coated with 3-Aminopropyl)-triethoxysilane (APTES), B: Si/SiO2 
coated with, poly-L-lysine hydro bromide and C: Bare Si/SiO2.



Figure S4: Top picture: SEM over Au nanoparticles deposited on n-doped Si treated with O2plasma and APTES. Bottom: ERSA 
modulated nanoparticles with a similar density of nanoparticles. TheL top SEM image was used when calculating the inter 
particle distance using Ripleys’ K function.



Figure S5: Top picture: SEM over Au nanoparticles deposited on p-doped Si treated with O2plasma and APTES. Bottom: ERSA 
modulated nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle 
distance using Ripleys’ K function.



Figure S6: Top picture: SEM over Au nanoparticles deposited on n-doped Si treated with APTES. Bottom: ERSA modulated 
nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle distance 
using Ripleys’ K function.



Figure S7: Top picture: SEM over Au nanoparticles deposited on P-doped Si treated with APTES. Bottom: ERSA modulated 
nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle distance 
using Ripleys’ K function.



Figure S8: Top picture: SEM over Au nanoparticles deposited on n-doped Si treated with O2plasma and PLL-HBr. Bottom: ERSA 
modulated nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle 
distance using Ripleys’ K function.



Figure S9: Top picture: SEM over Au nanoparticles deposited on p-doped Si treated with O2plasma and PLL-HBr. Bottom: ERSA 
modulated nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle 
distance using Ripleys’ K function.



Figure S10: Top picture: SEM over Au nanoparticles deposited on n-doped Si treated with PLL-HBr. Bottom: ERSA modulated 
nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle distance 
using Ripleys’ K function.



Figure S11: Top picture: SEM over Au nanoparticles deposited on p-doped Si treated with PLL-HBr. Bottom: ERSA modulated 
nanoparticles with a similar density of nanoparticles. The top SEM image was used when calculating the inter particle distance 
using Ripleys’ K function.



Figure S12: SEM over an attempt of deposit Au nanoparticles on n-doped Si treated with O2plasma.

Figure S13: SEM over an attempt of deposit Au nanoparticles on p-doped Si treated with O2plasma.



Figure S14: SEM over an attempt of deposit Au nanoparticles on n-doped Si.

Figure S15: SEM over an attempt of deposit Au nanoparticles on p-doped Si.



Matlab script for modelling of the deposition of nanoparticles

 %% time Callibration 
% This part calculates how many attempts the Monte-Carlo Process 
should try 
% to deposit a nanoparticle on the surface, a longer time will 
result in 
% more nanoparticle deposition attempts 
t = 1; % time of deposition in hours 
t = t*3600; % time into seconds 
kB = 1.38065*(10^-16); % boltzmanskonstant [(g cm^2) / (s^2 K)] 
n = 1.9 * 2 * 10^11; % koncentration of nanoparticles [NP / cm^3] 
T = 298.15; % ambient temperature[K] 
r1 = 30 * 10^-7; % NP radius [cm] 
ny = 0.008903; % viscosity of the NP solution [g/cm*s] at T = 
298.15[K] 
Wsize = 1024*675*(1/88)^2; % simulation area [μm^2] 
s_factor = sqrt(1/(12*pi)); % 
iter = 10^-8 * (s_factor * n * sqrt( (kB*T)/(ny*r1) )) * sqrt(t) * 
Wsize; 
iter = round(iter); % The number of deposition attempts 
%% probability calculation 
% This Sections lists different constants used later in the 
calculations 
ep0 = 8.854187818*(10^-12); % Vacuum Permitivity [F/m] 
epR = 78.5; % Relative Permitivity for the solution 
Ah = 1.5*10^-20; % hamaker const [J] 
el = 1.60217657*(10^-19); % elementray charge [C] 
T = 298.15; % ambient Temperature [K] 
r = 30*10^-9; % radius of one NP 
nm2pix = 88/1000; % Scaling factors from nm to pix 
pix2nm = 1/nm2pix; % Scaling factors from pix to nm 
x1 = 0:0.1:120; % Distances between two particles 
x = x1*10^-9; % Rescaling into m from nm 
xsi_pp = -34 * 10^-3; % Potential of the particles [V] 
kappa = 1/(7*10^-9); % 1/ the debye length [1/m] 
kB = 1.38065*(10^-23); % Boltzmans constant [m^2*kg/s^2*K] 



%%%%%%% PP probability %%%%%%%%%%%% 
% This section describes the probability of finding two particles 
next 
% two each other 
constantsMaster = 
struct('ep0',ep0,'epR',epR,'r',r,'xsi_pp',xsi_pp,'kappa',kappa,'kB',
kB,'T',T,'Ah',Ah,'electric_const',el,'nm2pix',nm2pix,'pix2nm',pix2nm
); 
% this saves all the constants for later in a struct vector 
W_edl_pp = 2*pi*r*ep0*epR*xsi_pp*xsi_pp*exp(-kappa*x); 
% this part describes the electric double layer interactions 
phi_edl_norm = exp(-W_edl_pp/(kB*T)); % this part normilizes the 
phi_edl 
x_norm = (x*10^9); % conversion into nm 
figure 
plot(x_norm,phi_edl_norm,'m.--') % this part plots the probability 
of finding two particles next to each other 
legend('edl') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%%%%%%%% SP probability %%%%%%%%%% 
% this part calculates the probability of depositing a particle on 
the 
% surface 
x_norm = (x*10^9); 
% xsi_sp = linspace(-0.08,-0.06,1000); % the surface potentials used 
here 
xsi_sp = linspace(-0.0271,-0.011,1000); 
totalMAX = zeros(1,length(xsi_sp)); 
% the for loop, loops each potential and calculates the probability 
for 
% that potential 



for h = 1:length(xsi_sp) 
W_edl_sp = 4*pi*r*ep0*epR*xsi_pp*xsi_sp(h)*exp(-kappa*x); 
% This part calculates the electric double layer interactions 
between a 
% surface and a particle 
phi_SP_vdw = (-Ah*r)./(6*x); % this part calculates the van der 
waals 
%interactions between a surface and a particle 
phi_SP_tot = W_edl_sp + phi_SP_vdw; 
% this part sums up the electrostatic interactions and the van der 
% waals interactions 
[maxV,idxV] = max(phi_SP_tot/(kB*T)); 
totalMAX(h) = exp(-maxV); 
% this part takes the high of the barrier and normilizes it 
end 
figure; 
plot(xsi_sp(totalMAX <= 1),totalMAX(totalMAX <= 1),'.') 
% plot(xsi_sp,totalMAX,'.') 
phi_0_tot = totalMAX(totalMAX <= 1); 
xsi_sp = xsi_sp(totalMAX <= 1); 
% this part makes sure that we only have probability lower than 1 
present 
%% 
%%%%%%%%%%%%%%%% RSA part simulation 
grid = zeros(675,1024); % The size of the deposition area 
s = size(grid); % Nbr of elements in size matrix 
[x0,y0] = meshgrid(1:s(2),1:s(1)); % meshgrid builds up the 
coordinate system 
radius = r*nm2pix*10^9; % radius of one NP 
count = 0; % 
turns = iter; % 
maxP = 10000; % 
Ptot = zeros(1,turns); % 
adsorption = 0; % NBR of adsorbed NP 
adsorptionTOT = zeros(1,turns); % -||- 



countTOT = adsorptionTOT; % 
xtot = []; % used to save x coordinates 
ytot = []; % used to save y coordinates 
probTOT = []; % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% the following part is for saving the values calculated later 
yMaster = struct('y',cell(1,length(phi_0_tot))); 
xMaster = struct('x',cell(1,length(phi_0_tot))); 
adsorptionMaster = struct('adsorption',cell(1,length(phi_0_tot))); 
densityMaster = zeros(1,length(phi_0_tot)); 
probMaster = struct('totalProb',cell(1,length(phi_0_tot))); 
phi_0_totMaster = phi_0_tot; 
xsi_s_Master = xsi_sp; 
constantsMaster; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
runs = 1:length(phi_0_tot); 
countMaster = struct('count',runs); 
% The following double for loop iterates first through all the 
different 
% probabilities for the corresponding surface potential, 
for h = 1:length(phi_0_tot) 
prob_surface = phi_0_tot(h); % the specific surface potential in use 
in this iteration 
adsorption = 0; % the number keeping track of how many particles 
have adsorbed 
xtot = []; % xposition of the deposited particles 
ytot = []; % yposition -||- 
probTOT = []; % the probability of adsorption for each particle 
throughout the depotision 
grid = zeros(675,1024); % the size of the deposition window, this 
keeps track of where the particles have adsorbed 
for k = 1:turns; % number of deposition attempts 
count = count +1; % count down 
x = randi([1 s(2)]); % random x coordinate 



y = randi([1 s(1)]); % random y coordinate 
rnd = randi([0 maxP]); % random integear used for the sticking 
probability 
%%%% new conditions for repulsion between particles 
probability = prob_surface; % probability of sticking to the surface 
if ~isempty(xtot) % enters if there are other particles on the grid 
dist = pdist2([x y], [xtot' ytot']); % calculates the distance to 
all other particles to the particle beeing deposited 
if min(dist) < 14 % only checks the particle closest to itself 
phiTOT = []; % P_sp between each particle near to the particle 
trying to deposit 
dist_test = dist < 14; % 
dist_temp2 = dist(dist_test); % only takes the particles that are 
closer than 14 
for l = 1:length(dist_temp2) % this loop goes through all the 
particles closer than 14 and calculates the probability for each 
particle and than calculates the total probability 
dist_temp2 = dist_temp2 - 2*radius; 
[~,temp] = min(abs(x_norm*nm2pix - dist_temp2(l))); 
phi_dist = phi_edl_norm(temp); 
phiTOT = [phi_dist phiTOT]; 
end 
phiTOT = [phiTOT prob_surface]; 
probability = prod(phiTOT); 
end 
end 
Ptot(k) = probability; 
circle = (x0 - x).^2 + (y0 - y).^2 <= radius.^2; % draws a 
circle/disk/particle 



if grid(circle) == 0 && rnd <= maxP*probability; % puts the particle 
on the grid if it is allow according to the probability 
grid(circle) = 1; 
adsorption = adsorption + 1; 
xtot = [xtot x]; 
ytot = [ytot y]; 
probTOT = [probability probTOT]; 
end 
adsorptionTOT(k) = adsorption; 
countTOT(k) = count; 
end 
%%%%%%%%%%%% the following code saves the data for later processing 
%%%%%%%%%%% 
S_xtot = struct('x',xtot); 
xMaster(h) = S_xtot; 
S_ytot = struct('y',ytot); 
yMaster(h) = S_ytot; 
S_adsorption = struct('adsorption',adsorptionTOT); 
adsorptionMaster(h) = S_adsorption; 
adTemp = adsorption/(s(2)*s(1)*((1/88)^2)); 
densityMaster(h) = adTemp; 
S_prob = struct('totalProb',probTOT); 
probMaster(h) = S_prob; 
end 
%% 
Master = 
struct('constantsMaster',constantsMaster,'xsi_s_Master',xsi_s_Master
,'phi_0_totMaster',phi_0_totMaster,'x_norm_PP',x_norm,'phi_edl_norm_
PP',phi_edl_norm,'xMaster',xMaster,'yMaster',yMaster,'adsorptionMast
er',adsorptionMaster,'densityMaster',densityMaster,'probMaster',prob
Master); 
% % %% saving 
save('20_hours_loglog.mat','Master')


