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N.B.: We refer to the main text as m.t.

Molecular structure and TDM of Cy3B

The optimized geometry of Cy3B dye calculated using B3LYP/6-31G in vacuum, as described

in the Methods section, is shown in Tables S1 and S2. The TDMs of the excited state

corresponding to the first absorption peak of the dye, calculated through CAM-B3LYP/6-

31G(d,p), are: (3.94, 7.95, -3.20) D in vacuum, (-5.07, 9.99, -3.14) D in water, and (-5.09,

10.02, -3.15) D in water with a nearby NP (vector moduli of 9.43 D, 11.64 D and 11.67

D, respectively). The latter vectors are consistent with the molecular structure presented

in Tables S1 and S2. For the TDDFT-PCM excited states calculation of the dye in the

presence of the NP, the nuclear center of charges of the dye was placed at a distance of 4.2

nm from the center of the NP, while all atomic positions are determined once the TDM,

corresponding to the dye in water, is oriented radially with respect to the NP.
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Table S1: Atomic cartesian coordinates (in angstroms) of Cy3B optimized geometry in
vacuum (see Methods). To be continued in Table S2.

C 2.5339187152 0.8459649542 -0.5060287412
C 3.7651521728 0.8770531111 0.4418868715
C 4.9905386653 1.5136802092 -0.2697464141
C 4.0847396595 -0.5371426550 0.9338150811
C 4.3679595633 -1.6966084046 0.2255769637
C 4.5917138257 -2.9014948766 0.9241055158
C 4.8833373112 -4.1699349443 0.1247362299
C 4.4789269865 -5.4199381847 0.8640394090
O 3.3678035484 -5.8397675185 1.1313608573
O 5.6762786812 -6.0864252621 1.2938612137
N 5.4407065137 -7.2151130600 2.1035879404
C 5.3210763903 -7.0920942604 3.4929355577
O 5.3191757821 -6.0260398472 4.1136788986
C 5.1937529025 -8.5133661170 4.0269126553
C 5.1700897251 -9.4346128511 2.7795761136
C 5.3319011038 -8.5147715100 1.5729588889
O 5.3620005272 -8.7952871881 0.3778673829
C 4.5439068867 -2.9116315280 2.3285599258
C 4.2317011441 -1.7506656990 3.0519761217
C 3.9972704537 -0.5808264789 2.3356245216
N 3.6177619776 0.6959215056 2.8120474011
C 3.0823388850 0.9357260270 4.1613299445
C 3.2221791536 2.4138588500 4.5279256275
C 2.7288996033 3.3492146226 3.4290237534
O 1.2652412355 3.5561073988 3.5444466455
C 0.8617737293 4.6894629666 2.7299090269
C -0.6528332042 4.6173012541 2.5055442320
C -1.1121360531 5.8927540584 1.7910652738
N -0.1866657316 6.2604297054 0.6938542095
C 1.0180186758 5.6933852969 0.4580369425
C 1.5566460095 4.7342717803 1.3587311668
C 2.5221715861 3.7958112432 1.0294081934
C 2.9981795093 2.8823602703 2.0154474349
C 3.4539765155 1.5959076904 1.7775162089
C 1.6623777388 6.3720041134 -0.7683704854
C 2.9870766091 7.0742039944 -0.3472384619
C 1.9198858915 5.4106982548 -1.9644473611
C 0.5861374113 7.3926441197 -1.1383482346
C 0.5310321972 8.3138683855 -2.1731637809
C -0.6164416484 9.1084770431 -2.2744127366
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Table S2: Continuing from Table S1.

C -1.6871138999 9.0038503564 -1.3858705604
C -1.6453669684 8.0679826434 -0.3424565400
C -0.4956661520 7.2820744465 -0.2487045801
S -0.7090582604 10.3578115725 -3.6909047724
O -0.5048677967 9.3711624669 -5.0012596104
O -2.2114749095 11.0129651311 -3.4836797522
O 0.5732344924 11.3497774131 -3.3781499056
H 1.6496510510 0.4580650292 0.0073635577
H 2.7493386620 0.1918614679 -1.3590477346
H 2.2988888486 1.8400256923 -0.8955215234
H 5.8791783447 1.4784785933 0.3699981297
H 4.7963156679 2.5570279232 -0.5365663336
H 5.2073565310 0.9622901462 -1.1891046474
H 4.3978847552 -1.6910783598 -0.8611072627
H 5.9450756651 -4.2416483821 -0.1349610890
H 4.3070107177 -4.1475037848 -0.8078233626
H 6.0410317966 -8.7165257566 4.6920085688
H 4.2845165277 -8.5896702942 4.6331112424
H 5.9786640956 10.1710439350 2.7784391120
H 4.2292941346 -9.9884699188 2.6805746046
H 4.7374257598 -3.8278458682 2.8797602692
H 4.1713974870 -1.7874348433 4.1333850384
H 2.0277796937 0.6266837078 4.1838122540
H 3.6356079037 0.3144513289 4.8717649843
H 2.6717829281 2.6261207862 5.4493718658
H 4.2803202453 2.6369673728 4.7127915421
H 3.2002754453 4.3327135331 3.5768365202
H 1.1032372251 5.6142102797 3.2862523354
H -1.1767505585 4.5201352845 3.4614553372
H -0.8768831149 3.7265632815 1.9084561708
H -1.1431357377 6.7353031950 2.4878656551
H -2.1113464236 5.7757765073 1.3639942717
H 2.8519832573 3.7156102353 0.0017723533
H 2.8232294933 7.7880417217 0.4654733578
H 3.3910058371 7.6225449998 -1.2044540781
H 3.7304982457 6.3353795931 -0.0207590179
H 1.0379263071 4.8023015985 -2.1881109178
H 2.7820969966 4.7535202912 -1.7975434845
H 2.1375471389 6.0156351088 -2.8503219821
H 1.3282626122 8.4364128501 -2.8992215552
H -2.5304264109 9.6687229101 -1.5315754325
H -2.4703282830 7.9774972062 0.3559769783
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Tables of dielectric constants

Table S3: Static and dynamic dielectric constant of CdSe, ZnS, the homogeneous NP
(volume-weighted averages) and water.

CdSe ZnS NP water

ǫs 9.29S1 8.31S1 8.85 78.39
ǫd 6.20S1 6.18S2 6.19 1.776

Dielectric mismatch at the surface of the NP: excitonic

states and TEF

The Configuration Interaction approach for single excitonic states presented in Ref. S3 is

valid for the case of no dielectric mismatch at the surface of the NP. In our case the NP is

embedded in a different dielectric material (S3). Therefore, the exciton Hamiltonian (Eq. (7)

ibid.), is substituted by Ĥ = Ĥ(e)+Σ(re)+ Ĥ(h)+Σ(rh)−V (re, rh). Ĥ
(e) (Ĥ(h)) and re (rh)

are the electron (hole) Hamiltonian and coordinate, respectively, (defined in Eq. (3) ibid.).

V (r, r′) is the Green function of the generalized Poisson problem, i.e.,∇r {ǫ(r) · ∇rV (r, r′)} =

δ(r − r′), where ǫ(r) is the position-dependent dielectric constant. Σ(r) is the self-energy

associated with the latter problem.S4 In our specific case, ǫ(r) is spherically symmetric and

is defined piecewise as: ǫ(r) = ǫ1 for r ≤ RNP, and ǫ(r) = ǫ2 for r > RNP, where ǫ1 (ǫ2) is

the dielectric constant inside (outside) the NP, and RNP the radius of the NP. The explicit

expressions for V (r, r′) and Σ(r) can be found in Ref. S5. Σ(r) is introduced as an extra

potential in the numerical solution of the electron and hole single-particle states.S3

The derivation of TEF for the case of no dielectric mismatch can be also found in Ref.

S3. In the general case, we must substitute Eq. (15) and (17) (ibid.) by
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E (r;R) = ∇′[V (r, r′)]|
r′=R

, (1)

E (r;R) =
1

ǫ2

∑

l,m

4π

(ǫ+ 1)l + 1
rl Ylm(Ω) Glm(R), (2)

whereGlm(r
′) = ∇′{r′−l−1Y ∗

lm(Ω
′)}. Note that the last expression is only valid when r ≤ RNP

and R > RNP, which is the case of interest: TEF generated by the NP at the position of the

point-like TDM of dye (Eq. (5), m.t.).

Additional data in RET rates calculation

Table S4: Relevant quantities (spectral overlap, electronic coupling, RET/intrinsic decay
lifetimes ratio, and RET rate) for each of the possible RET process. The dye-NP distance
selected was R = 4.23 nm. This table is an extended version of Table 2 in the m.t.

D-A JDA (eV−1) |VDA|
2 (eV/ns) τDA/τD kDA (ns−1)

dye-NP 1.774 15.952 0.002 177.812
NP-dye 0.088 15.952 0.071 8.846
dye-dye 1.063 0.187 0.286 1.249

Experimental absorption and PL spectra of the dye and

NP

Figure S1 shows the experimental absorption and PL spectra of the dyeS6 and the NPS7 used

to compute the spectral overlap factors JM→NP and JNP→M reported in Table S4 (Eq. (6) in

the m.t.).
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Figure S1: Experimental absorption and PL spectra of the dye (from Ref. S6) and NP (from
Ref. S7).
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Master equations and time-dependent populations

The kinetic model is based on the following set of master equations,

dPMx

dt
=2kM

abs sin
2 γ (1− PMx

) + 4kMM(PMy
+ PMz

)(1− PMx
) +

− 2kMPMx
− 4kMMPMx

(2− PMy
− PMz

) (3a)

dPMy

dt
=4kMM(PMx

+ PMz
)(1− PMy

) + 2kNP→MPNPy
(1− PMy

) +

− 2kMPMy
− 4kMMPMy

(2− PMx
− PMz

)− 2kM→NPPMy
(1− PNPy

− PNPz
) (3b)

dPMz

dt
=2kM

abs cos
2 γ (1− PMz

) + 4kMM(PMx
+ PMy

)(1− PMz
) + 2kNP→MPNPz

(1− PMz
) +

− 2kMPMz
− 4kMMPMz

(2− PMx
− PMy

)− 2kM→NPPMz
(1− PNPy

− PNPz
) (3c)

dPNPy

dt
=2kM→NPPMy

(1− PNPy
− PNPz

)− kNPPNPy
− 2kNP→MPNPy

(1− PMy
) (3d)

dPNPz

dt
=kNP

abs cos
2 γ (1− PNPy

− PNPz
) + 2kM→NPPMz

(1− PNPy
− PNPz

)+

− kNPPNPz
− 2kNP→MPNPz

(1− PMz
) (3e)

where γ = arccos (e · ẑ). NP-bright (NP-dark) configuration corresponds to γ = 0 (γ = π/2).

The populations of the degenerate excited states of the NP with d
(+)
NP or d

(−)
NP are denoted as

PNPz
and PNPy

, respectively. PMx
, PMy

and PMz
correspond to the excited state populations

of each of the dyes with dM ‖ x̂, ŷ, and ẑ, accordingly. The latter kinetic equations are specific

for our prototypical NC with six dyes tethered to the NP in an octahedron configuration

and coherent with the crystal symmetry of the NP lattice, as seen in m.t.

The time-dependent solutions of Eqs. (3) are shown in Fig. S2. We refer to the dyes

located in the bright plane (dark axis) of the NP as bright-dyes (dark-dyes). Note that the

steady-state populations are reached within the first 10 ns.
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Figure S2: Time-dependent excited state populations of the bright-dyes, dark-dyes, and the
NP in the enhancement/quenching (R = 4.23 nm / R = 7.67 nm) regimes for NP-bright/NP-
dark configurations (Eqs. (3)). Mb and Md in legend stands for bright-dyes and dark-dyes,
respectively.

Steady-state rates and spectra

The steady-state total emission rates of the dyes and the NP are defined by

cM = 2 lim
t→∞

kM
fl

(

PMx
(t) + PMy

(t) + PMz
(t)

)

, (4a)

cNP = lim
t→∞

kNP
fl

(

PNPy
(t) + PNPz

(t)
)

, (4b)

respectively, where the dependence on γ and R is understood. The total emission rates for

NP-bright and NP-dark configurations, i.e., the coefficients entering in Eq. (7) of the m.t.,

are cbM ≡ cM(γ = 0) and cbM ≡ cM(γ = π/2).

In Fig. S3, we show the NP-bright/NP-dark spectra in the enhancement/quenching
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regimes.
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Figure S3: Calculated NP-bright and NP-dark spectra in the enhancement/quenching (R =
4.23 nm / R = 7.67 nm) regimes (cf. Figs. S2, and 3 in the m.t.).

We define as well the steady-state net RET rates KM→NP and KMM (capital letter K) as

follows

KM→NP =2kM→NPPMz
(1− PNPy

− PNPz
) + 2kM→NPPMy

(1− PNPy
− PNPz

)

−2kNP→MPNPz
(1− PMz

)− 2kNP→MPNPy
(1− PMy

), (5a)

KMM =4kMMPMz
(1− PMx

) + 4kMMPMy
(1− PMx

)

−4kMMPMx
(1− PMz

)− 4kMMPMx
(1− PMy

) (5b)

where PMx,y,z
and PNPy,z

are steady-state populations. KM→NP is the rate of RET from

bright-dyes to NP, which is the only possible dye-NP RET, while KMM is the rate of RET

from bright-dyes to dark-dyes. Both KM→NP and KMM depend also on the polarization (e.g.,
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NP-bright/NP-dark) through the populations (Fig. S2).

Equations (4) and (5) are specific for the prototypical NC with six dyes tethered to the

NP in an octahedron configuration and coherent with the crystal symmetry of the NP lattice,

as seen in m.t.

Table S5 show net RET and emission rates in the enhancement/quenching regimes for

NP-dark/NP-bright configurations. It is remarkable that the dye excitations are prefer-

entially transferred to the NP (i.e, cM ≪ KM→NP) in all cases, except for the NP-dark

configuration in the quenching regime, where intrinsic decay is a more efficient mechanism

(i.e, cM > KM→NP). For NP-dark configuration in the enhancement regime, the transfer

is accomplished in two steps: (i) the dye-dye RET from the photoexcited dyes to the dyes

aligned with the NP bright plane, and (ii) the dye-NP RET from the latter intermediate

dyes, as seen in Table S5. For NP-bright configuration, whether in the enhancement or the

quenching regime, the dominant process is the direct dye→NP transfer from the photoex-

cited dyes. Finally, we note that, even filtering the NP PL, the enhancement (cbM > cdM) and

the quenching (cbM > cdM) are still present, which indicate that those properties are specific

of the dye PL (Eq. (7), m.t.).

Blocking and back-transfer effects

Tables S6 and S7 are equivalent to Table S5 in the condition of kNP
abs = 0 and kNP→M = 0,

respectively. The latter are used as consistency checks of our interpretations. Indeed, we

corroborate from Tables S6 and S7 that NP absorption and back-transfer are both necessary

for obtaining the relative enhancement of dye PL in NP-bright with respect to NP-dark

configuration (cf. Table S5). In other words, in the condition of no absorption (blocking

effect suppressed) or no back-transfer, total emission rates indicate a quenching, i.e., cbM < cdM,

at all distances.

We say that dye→NP RET process is blocked when the NP is already excited, and
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therefore, cannot accept further excitations before decaying. This blocking is accounted for

by factors (1− PNPy
− PNPz

) in the NP absorption and dye→NP RET terms of the kinetic

equations, i.e., Eqs. (3). Notice that it is more probable to have this blocking events if the

NP is also excited by light absorption. As discussed in the m.t., the blocking effect reduces

the probability of dye→NP RET, thus increasing the probability of dye de-excitation by

intrinsic decay pathways. Back-transfer, i.e., NP→dye RET, also reduces the net flux of

excitations from dyes to the NP, by contributing to the dyes excited state population, which

ultimately leads to an increase of the probability of dye de-excitation by intrinsic decay

pathways. In Tables S6 and S7 we show how the total emission rates of the dyes in the

NP-bright configuration decrease when the NP absorption or back-transfer are switched off,

as expected, ultimately eliminating the relative enhancement of the PL.

Table S5: Net dye→NP (red), and bright-dyes → dark-dyes (blue) RET rates, along with
total dye emission rates for NP-dark and NP-bright configurations in the case of enhance-
ment/quenching (R = 4.23 nm / R = 7.67 nm). The dye absorption rate is 3.0× 10−2 ns−1.
Bright-dyes are the four dyes placed in the bright plane of the NP, while dark-dyes are the
two dyes in the dark axis of the NP. In the schematics, NP is drawn as a large circle, whereas
bright-dyes (dark-dyes) are represented by a single black dot on top (to the right) of the NP.

ENHANCEMENT QUENCHING
NP-dark NP-bright NP-dark NP-bright

Net RET rates (ns−1)

9.
1
×
10

−
3 9.6

×
10 −

3

8.
7
×

10
−
3 4.4

×
10 −

4

2.
9
×

10
−
3 3.2

×
10 −

3

8.
4
×

10
−
3 2.3

×
10 −

4

Total emission rates (ns−1)
6.1× 10−4 8.9× 10−4 4.7× 10−3 1.1× 10−3
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Table S6: Same as Table S5 for the case of kNP
abs = 0. No relative enhancement is found since

blocking effect is suppressed.

✭
✭
✭
✭

✭
✭

✭
✭
✭
✭

ENHANCEMENT QUENCHING
NP-dark NP-bright NP-dark NP-bright

Net RET rates (ns−1)

9.
1
×

10
−
3 9.6

×
10 −

3

9.
2
×

10
−
3 2.6

×
10 −

4

2.
9
×

10
−
3 3.2

×
10 −

3

8.
8
×

10
−
3 1.7

×
10 −

4

Total emission rates (ns−1)
6.1× 10−4 5.3× 10−4 4.7× 10−3 8.1× 10−4

Table S7: Same as Tables S5 and S6 for the case of kNP→M = 0. No relative enhancement is
found since back-transfer effect is suppressed.

✭
✭
✭
✭

✭
✭

✭
✭
✭
✭

ENHANCEMENT QUENCHING
NP-dark NP-bright NP-dark NP-bright

Net RET rates (ns−1)

9.
9
×

10
−
3 9.9

×
10 −

3

1.
0
×

10
−
2 1.7

×
10 −

6

3.
0
×

10
−
3 3.2

×
10 −

3

9.
3
×

10
−
3 9.4

×
10 −

5

Total emission rates (ns−1)
1.0× 10−4 3.5× 10−6 4.6× 10−3 4.5× 10−4

S13



Octahedral tessellation.

To evaluate the dependence of the average dye-dye and dye-NP RET rates on N , we generate

a collection of N -vertexes polyhedra circumscribed in a sphere of radius R representing the

shell of dyes. Dyes are sitting at the vertexes of such polyhedra. In particular, we follow the

rules for octahedral tessellation.S8 The case of N = 6 is the one considered in the text, i.e.,

an octahedron. In general, the angular positions of the dyes are

θ =
π

2

k

s
, (6a)

φ =















0 if k = 0 ,

π
2

l
k′

if k 6= 0 ; for l = 0, . . . , 4k′ − 1 ,

(6b)

for k = 0, . . . , 2s, being k′ = min(k, 2s − k), s an integer, and N = 4s2 + 2. Notice that

Nfn = 6N/(N + 3) is the mean number of first neighbors in the N -vertexes polyhedron

following octahedral tessellation. This sort of tessellation allows us to assure a close to

uniform distribution of dyes in the surface of the NP for any N . Indeed, it is impossible to

build a regular N -vertexes polyhedron for arbitrary N .S9

Figure S4: The octahedron (N = 6) and other two N -vertexes polyhedra generated by
octahedral tessellation rules, corresponding to Eqs. (6).
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From Eqs. (6), we obtain the dye-dye distances RMM and the orientational factor

κ ≡ − (3(dM1
·RM1M2

)(dM2
·RM1M2

)/R2
MM − dM1

· dM2
) /|dM|

2 in dye-dye RET rate (see

Eq. (4) in the m.t.). Note that for N = 6, κ = 3/2.

Average RET rates

The average dye-dye and dye-NP RET rates are defined as

Φ
b/d
MM =

∑N
i kM

abs,b/d(θi, φi)
∑N

j;J 6=i kMM(θi, φi; θj, φj)
∑N

i kM
abs,b/d(θi, φi)

, (7a)

Φ
b/d
M→NP =

∑N
i kM

abs,b/d(θi, φi) kM→NP(θi, φi)
∑N

i kM
abs,b/d(θi, φi)

, (7b)

respectively, where kM
abs,b/d(θi, φi) is the absorption rate of the dye numbered i, whileNfn(θi, φi)

is the number of first neighbors around the site i. Integer i maps into a set of two integers,

k and m, defining the polar and azimuthal angles given by Eqs. (6). b or d stands for

NP-bright or NP-dark polarizations, respectively. kM
abs,b = kM

abs cos
2 (θ), whereas kM

abs,d =

kM
abs sin

2 (θ) cos2 (φ). kMM is dependent on a pair of angular positions corresponding to a

pair of interacting dyes, and it is evaluated following Eqs. (2), (4) in the m.t., and Eqs. (6)

here.

Details on Figure 5 inset of the main text

Figure 5 inset bars (m.t.) represent the region for which the PL quenching is possible, i.e.,

where Φb
M→NP > kM, Φ

d
M→NP < kM and ΦMM < kM. We only computed the maximum of

q(R) for the N = 6 case (Figure 3, m.t.). Nevertheless, we can estimate qmax by means of a

simpler model, i.e., Eq. (9) (m.t.), and re-scale qmax in such a way that for N = 6 the result

matches the actual value coming from Figure 3 (m.t.). The reported bar height in Figure 5
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inset of m.t. for N = 18 is thus estimated. We take Φb
M→NP in Eq. (9) (m.t.) at the middle

point of the PL quenching region.

Poisson distribution of the number of dyes per NP

Let us, finally, consider that the dispersion of the number of dyes per NC follows a Poisson

statistics, i.e., with probability distribution P (n;N) = Nne−N/n!, where now N is the

expected value for the number of dyes per NC, and n is a particular realization of the

number of dyes in a specific NC.S10 We can then compute the expected quenching curve as

q(R;N) =
∞
∑

n=0

P (n;N) q(R;n), (8)

where q(R;n) is the quenching curve of a NC with n dyes. We get the approximated q(R;n)

from a linear interpolation of q(R) for the cases with n = 6 and 18, i.e., q(R;n) = (q(R; 18)−

q(R; 6))/12× (n− 6)+ q(R; 6). The latter q(R; 6) and q(R; 18) are quenching curves coming

from a generalization of the model already presented in Eq. (9) of the m.t., i.e.,

q(n;R) =
Φb

M→NP(n;R)

(kM + Φb
M→NP(n;R))

Θ(kM − ΦMM(n;R)) Θ(kM − Φd
M→NP(n;R)), (9)

where the explicit dependence on n and R comes from the rates. Heaviside theta functions

in Eq. (9) restrict the result to the region in which our model is valid (see m.t. and previous

paragraph). After the interpolation and the average on n, for N = 6 and N = 18 we obtain

an almost identical curve to that of n = 6 and n = 18, i.e., q(R;N) ≈ q(R;n), as observed

in Fig. S5.
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Figure S5: Quenching curves coming from the model in Eq. (9) for n = 6 and n = 18,
along with the Poissonian expectation values for N = 6 and 18 (Eq. (8)). The quenching
curve coming from the kinetic Eqs. (3) (i.e., n = 6), here called “exact”, is also plotted as a
reference.
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