Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

An Investigation on the Aqueous-phase Hydrodeoxygenation of Various Methoxy-substituted Lignin Monomers on

Pd/C and HZSM-5 Catalysts

Cong Zhang^{a‡}, Jingbo Qi^{a‡}, Jing Xing^{a,b}, Si-Fu Tang^a, Liang Song^{a,*}, Yuanyuan Sun^a, Chuanhui Zhang^a, Hongchuan Xin^a, Xuebing Li^{a,*} ^a Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China ^b School of Chemistry and Materials Science, Liaoning Shihua University, Fushun, 113001, China

Fig. S1. Catalytic characterization: (a) XRD patents of HZSM-5 zeolite catalyst; (b) ²⁷Al MAS NMR spectra of HZSM-5 zeolite catalyst; (c) SEM micrographs of HZSM-5 zeolite catalyst; (d) TEM micrographs of Pd/C catalyst.

Fig. S2. (a) Magnified SEM micrographs of HZSM-5 zeolite catalyst; (b) Magnified TEM micrographs of Pd/C catalyst.

Fig. S3. NH₃-temperature programmed desorption of HZSM-5 zeolite catalyst; experimental data (solid line) and fitted data (dotted line).

Catalyst	Si/Al	BET surface area ^a , m ² g ⁻¹	External surface area ^b ,	Mesopore volume ^c , cm ³ g ⁻¹	Micropore volume ^b , cm ³ g ⁻¹	Acidity (N	IH₃ mmol∕ g	Ea (kJ/mol)		
			m^2g^{-1}			total	weak	strong	weak	strong
						acid sites	acid sites	acid sites	acid sites	acid sites
HZSM-5	15	396	13	0.04	0.16	3.62	2.16	1.46	51	76

 Table S1. Textural and acidity properties of HZSM-5 zeolite.

^a BET method.

^b t-plot method.

^c BJH method (adsorption branch).

Table S2. Product distribution of hydrodeoxygenation of guaiacol over Pd/C and HZSM-5 as a function of reaction temperature.

		Selectivity of products (C %)														
Reaction Temperature			0	o	10		0	_01	_ں ا	он		0 1			он	Conversion of
(K)	CH₃OH	\bigcirc	\bigcirc	\bigcirc	\int		\bigcirc	\bigcirc	\bigcirc	\bigcirc					но	(C %)
383	0.9	0.0	0.0	0.1	0.0	5.4	0.0	0.0	0.0	0.3	0.0	0.0	56.6	36.6	0.0	39.4
413	3.0	0.0	0.0	1.3	0.0	6.4	0.1	0.1	0.0	0.0	0.0	0.0	41.8	35.8	11.5	100.0
443	9.6	0.0	0.0	0.1	0.1	1.4	8.0	0.7	0.1	0.0	19.5	5.6	20.4	12.4	22.2	86.4
473	11.5	0.0	0.0	0.0	0.4	0.6	15.5	1.7	0.1	0.0	16.9	5.1	8.8	10.7	28.6	83.0
513	14.3	5.9	0.6	0.0	1.6	0.0	51.7	0.0	0.1	0.0	19.0	4.5	0.2	0.0	2.0	77.4

^a Typical reaction condition: guaiacol (0.005 mol), HZSM-5 (Si/Al=15, 0.5 g), Pd/C (0.05 g), H₂O (20 mL), 2 MPa H₂, 2 h, stirred at 680 rpm.

Table S3. Product distribution of hydrodeoxygenation of 2,6-dimethoxy-phenol over Pd/C and HZSM-5 as a function of reaction temperature. ^a

		Conversion of z^0												
Reaction Temperature (K)	CH ₃ OH	°	но						НО	но			(C %)	
383	18.8	0.0	0.0	0.0	30.5	0.0	0.0	0.0	25.4	1.2	0.0	24.0	6.5	
413	21.9	0.3	1.4	3.9	23.6	8.5	1.4	2.2	26.5	0.4	0.0	10.0	89.2	
443	23.2	0.0	0.1	9.5	43.6	7.8	0.2	0.0	7.7	1.7	0.0	6.2	53.1	
473	23.0	0.0	0.3	19.1	30.5	11.1	0.1	0.0	7.0	2.4	0.0	6.4	66.9	
513	24.4	0.0	0.0	65.9	6.4	0.0	0.0	0.0	0.0	2.3	0.9	0.0	73.1	
413 K with Pd/C and Beta (Si/Al=12.5)	19.0	0.2	1.0	2.7	16.3	5.9	28.0	1.6	18.3	0.3	0.0	6.9	92.3	

^a Typical reaction condition: 2,6-dimethoxy-phenol (0.005 mol), HZSM-5 (Si/Al=15, 0.5 g), Pd/C (0.05 g), H₂O (20 mL), 2 MPa H₂, 2 h, stirred at 680 rpm.