Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Thickness-Dependent Bandgap Tunable Molybdenum Disulfide Films for Optoelectronics

Juntong Zhu,^a Jiang Wu,^b Yinghui Sun,^{*a} Jianwen Huang,^a Yufei Xia,^a Hao Wang,^a Haibo Wang,^a Yun Wang,^a Qinghua Yi,^a Guifu Zou^{*a}

^aCollege of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

^bDepartment of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK.

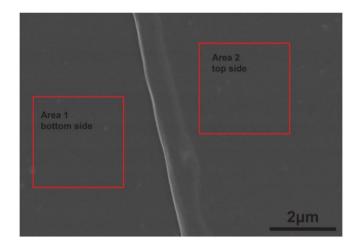


Figure S1. SEM image of bottom (left) and top (right) sides of 50 nm MoS₂ film after peeled off on the left part by tape.

	element	Top side	Bottom side
Atomic %	Mo-L	31.71	33.86
	S-K	68.29	66.14

Table S1. EDAX of bottom (left) and top (right) sides of 50 nm MoS₂ film after peeled off on the left part by tape.

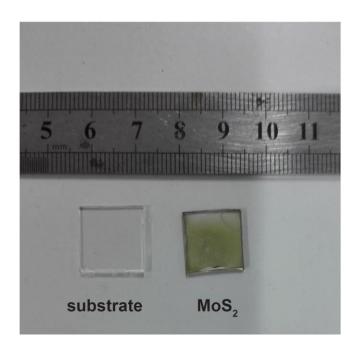


Figure S2. A large area photograph of MoS_2 film, the left is the quartz substrate and the right is MoS_2 film prepared on quartz.

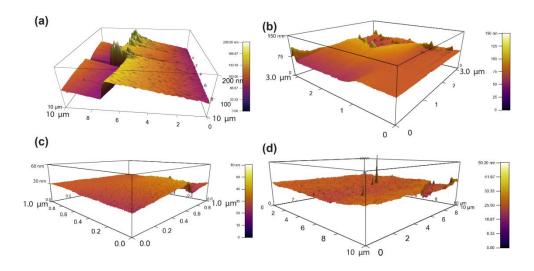


Figure S3. Perspective view of AFM images collected from MoS_2 films produced from Mo precursor concentration of 200 mM (a), 150 mM (b), 50 mM (c) and 13 mM (d), respectively.