SUPPLEMENTARY INFORMATION

A Microwave-Assisted Highly Practical Chemoselective Esterification and Amidation of

Carboxylic Acids

GunindraPathak, Diparjun Das and Samuel LalthazualaRokhum*

^aDepartment of Chemistry, National Institute of Technology Silchar, Silchar-10, Assam,

India

* Corresponding author. Tel.: +91 3842 242915; fax: +91 3842-224797; email address: rokhum@che.nits.ac.in

Table of Contents

General Remarks	S4
¹ H & ¹³ C NMR spectra of Dodecylbenzoat	S5
¹ H & ¹³ C NMR spectra of Octyl 4-methoxybenzoate	S6
¹ H & ¹³ C NMR spectra of Dodecyl 4-methoxybenzoate	S7
¹ H & ¹³ C NMR spectra of Octadecyl 4-methylbenzoate	S8
¹ H & ¹³ C NMR spectra of Octyl 4-nitrobenzoate	S9
¹ H & ¹³ C NMR spectra of <i>p</i> -Tolyl 4-nitrobenzoate	S10
¹ H & ¹³ C NMR spectra of Dodecyl 3-nitrobenzoate	S11
¹ H & ¹³ C NMR spectra of Octadecyl 4-flurobenzoate	S12
¹ H & ¹³ C NMR spectra of Phenethyl 4-chlorobenzoate	S13
¹ H & ¹³ C NMR spectra of Phenethyl propionate	S14
¹ H & ¹³ C NMR spectra of Octyl 2-ethylhexanoate	S15
¹ H-NMR spectra of Dodecyl 2-ethylhexanoate	S16
¹ H & ¹³ C NMR spectra of Sec-butyl-2-ethylhexanoate	
¹ H & ¹³ C NMR spectra of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl2-ethylhe	xanoateS.18
¹ H & ¹³ C NMR spectra of Dodecyl-4-methylbenzoate	S19
¹ H & ¹³ C NMR spectra of Phenethyl 4-methylbenzoate	S20
¹ H & ¹³ C NMR spectra of Octyl 4-hydroxybenzoate	S21
¹ H & ¹³ C NMR spectra of 6-Hydroxyhexyl benzoate	S22
¹ H & ¹³ C NMR spectra of 6-Hydroxyhexyl 4-nitrobenzoate	S23
¹ H & ¹³ C NMR spectra of 6-Hydroxyhexyl propionate	S24
¹ H & ¹³ C NMR spectra of N-benzylbenzamide	S25
¹ H & ¹³ C NMR spectra of N-cyclohexylbenzamide	S26
¹ H & ¹³ C NMR spectra of N-phenylbenzamide	S27
¹ H & ¹³ C NMR spectra of <i>N</i> -Cyclohexyl-4-nitrobenzamide	S28

General Remarks

IR spectra were recorded on a Perkin–Elmer Spectrum One FTIR spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker (500 MHz, 400 MHz and 300 MHz) spectrometer using TMS as internal reference. Chemical shifts for 1H NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me₄Si δ = 0.0 ppm) with CDCl₃ as solvents. ¹³C NMR spectra were recorded at 125 MHz and 100 MHz. Chemical shifts for ¹³C NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me₄Si δ = 0.0 ppm) with CDCl₃ as solvent. ¹⁴H NMR data are reported in the order of chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, and m = multiplet), number of protons, and coupling constant in hertz (Hz). Mass spectra were obtained from Waters ZQ 4000 mass spectrometer by the ESI method, while the elemental analyses of the complexes were performed on a Perkin–Elmer-2400 CHN/S analyzer. TLC plates were visualized by exposing in iodine chamber, UV-lamp or spraying with KMnO₄ and heating.

Fig: ¹H &¹³C NMR of Dodecylbenzoate, 2

1H EN1, CDC13, 28/05/15, SAIF, NEHU

Fig: ¹H &¹³C NMR of Octyl 4-methoxybenzoate . 5

Fig: ¹H &¹³C NMR of Dodecyl 4-methoxybenzoate, 6

Fig: ¹H &¹³C NMR ofOctadecyl4-methylbenzoate. 7

Fig: ¹H &¹³C NMR of Octyl 4-nitrobenzoate, 8

Fig: ¹H &¹³C NMR of4-Tolyl 4-nitrobenzoate, 9

Fig: ¹H &¹³C NMR ofDodecyl 3-nitrobenzoate, 10

Fig: ¹H &¹³C NMR of Phenethyl 4-flurobenzoate, 11

Fig: ¹H &¹³C NMR ofOctadecyl 4- flurobenzoate, **12**

Fig: ¹H &¹³C NMR ofPhenethyl4-chlorobenzoate, 14

Fig: ¹H &¹³C NMR ofPhenethylpropionate, 16

Fig: ¹H &¹³C NMR of Octyl 2-ethylhexanoate, 17

Fig: ¹H &¹³C NMR of Dodecyl 2-ethylhexanoate, 18

Fig: ¹H &¹³C NMR of Sec-butyl-2-ethylhexanoate, **19**

Fig: ¹H &¹³C NMR of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-ethylhexanoate, 20

Fig: ¹H &¹³C NMR of Dodecyl 4-methylbenzoate, 21

Fig: ¹H &¹³C NMR ofPhenethyl 4-methylbenzoate, 22

Fig: ¹H &¹³C NMR ofOctyl 4-hydroxybenzoate, 26

Fig: ¹H &¹³C NMR of 6-Hydroxylhexylbenzoate, 36

Fig: ¹H &¹³C NMR of6-Hydroxylhexyl 4-nitrobenzoate, 37

Fig: ¹H &¹³C NMR of 6-Hydroxylhexylpropionate, 38

Fig: ¹H &¹³C NMR of N-benzylbenzamide, 40

Fig: ¹H &¹³C NMR of N-cyclohexylbenzamide, 41

Fig: ¹H &¹³C NMR of N-phenylbenzamide, 42

Fig: ¹H &¹³C NMR of N-cyclohexyl 4-nitrobenzamide, 46