Electronic Supplementary Information (ESI)

An activatable fluorescent probe with an ultrafast response and large Stokes shift for live cell bioimaging of hypochlorous acid

Feng Liu, Ying Tang, Yongqing Kuang, Dan Pan, Xianjun Liu, Ru-Qin Yu*, Jian-Hui Jiang*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

* Corresponding authors. E-mail: rqyu@hnu.edu.cn; jianhuijiang@hnu.edu.cn. Tel.: 86-731-88822577; Fax: 86-731-88822872.

Table of Contents

- 1. Instrumentation
- 2. Comparison of this method and other assays
- 3. Structure characterizations of HPBD, HPBD-1, HPBD-2
- 4. Detection limit and linear range of **HPBD** for HOCl detection
- 5. Colorimetric response of HPBD to various ROS and RNS
- 6. Sensing mechanism study
- 7. MTT assay

1. Instrumentation

Mass spectra (MS) were performed using an LCQ Advantage ion trap mass spectrometer from Thermo Finnigan or Agilent 1100 HPLC/MSD spectrometer. ¹H NMR and ¹³C NMR spectra spectra were recorded on a Bruker DRX-400 NMR spectrometer (Bruker) using tetramethylsilane (TMS) as an internal standard. UV-vis absorption spectra were plotted using a Shimadzu UV-2450 spectrophotometer with a wavelength interval of 2 nm. Fluorescence spectra were obtained on a HORIBA Fluoromax-4 spectrofluorometer (JobinYvon, Japan) with both excitation and emission slits set to 5.0 nm. The pH was verified using a Mettler-Toledo FE20 pH meter. The fluorescence imaging of cells was performed using a confocal laser scanning microscopy (Olympus, FV-1000).

2. Comparison of this method and other assays

Methods		Materials		Linear	Detection limit	Ref.	
Colorimetric Method		N,N'-diethyl-p-phenylenediamine (DPD)			0-40 μM	-	1
Electrochemical Method	a co	mmercial 2B pencil lead-based graphite sensor			0-6 ppm	0.303 μA ppm ⁻¹ cm ⁻ 2	2
Chemiluminescence Method		carbon nitride quantum dots (g-CNQDs)			0.02 -10 μM	0.01 μΜ	3
Fluorescent probe	Probes	$\lambda_{ex}/\lambda_{em}$ (nm)	Sensing moieties	Detection medium and [probe]	0-5 μΜ	25 nm	4
	AC-ClO	480/576	1,8-diamino naphthalene	PBS buffer (pH 10.0, 20 mM) and DMF (1/4, v/v), 5 μM			
	nanoprobe (MTPE-M)	340/498 -595	dicyanoviny l	PBS buffer solutions (pH 7.4, 10 mM, containing 1% DMSO and 1 mM CTAB) 10 μM	0-45 μΜ	0.47 μΜ	5
	НКОСІ-З	490/527	2,6- dichlorophe nol	PBS solution (10 mM, pH 7.4, DMF 0.1%) 10 μM	0-10 μΜ	0.33 nm	6
	BClO	480/505	pyrrole	PBS/EtOH (pH 7.4, 1:9); 1 μM	0-10 nm	0.56 nm	7
	НВР	480/508	heterocyclic hydrazone	PBS buffer-MeOH (v/v = 50/50, 50 mM PBS, pH7.4) 5 μM	1-8 μΜ	2.4 nm	8
	Probe 1b	464/505 540/585	diaminomal eonitrile	PBS buffer/DMF (pH 7.4, 8:2) 3 μM	0.9-90 μM	0.2 µM	9
	probe 1	450/556	oxime	H ₂ O:CH ₃ CN (99.5 : 0.5, v/v) buffered with HEPES (50 mM), pH = 7.4. 5 μ M	0-25 μΜ	163 nM	10
	Flu-1	-/530	oxime	HEPES/DMSO (pH 7.05,1:9) 10 μM	-	-	11

Table S1. Comparison of this method and other assays

	SeCy7	690/786	selenide	PBS buffer (pH 7.4) 30 μM	6-60 μM	310 nm	12
	CM1	405/480	selenide	PBS (pH=7.4) 4 μM	0-6.4 μM	10 nm	13
	HCSe	510/526	selenide	H ₂ O-CH ₃ CN (v/v = 99/1, 0.1 M PBS, pH 7.4) 10 μM	0-9 μΜ	7.98 nm	14
	Cou-Rho- HOCl	410/473 -594	thiosemicar bazide	PBS/DMF (pH 7.4, 1:1) 5 μM	0.1-100 μM	52 nm	15
	RSTPP	553/580	thio-lactone	PBS (pH=7.4) 2.5 μM	0-35 μΜ	9 nM	16
	FBS	498/523	thio-lactone	KH ₂ PO ₄ buffer (50 mM, pH 7.4) 2 uM	0-1.0 μM	200 nm	17
_	PNIS	325/447	thione	PBS solution (50 mM, pH 7.4, DMF 0.2%)	0-60 μΜ	210 nm	18
_	Ptz-AO	475/540	thioether	Η ₂ Ο 5 μΜ	0-25µM	2.7 nM	19
	Hypo-SiF	570/606	thioether	pH 7.4 phosphate buffer solution and 0.5% DMF 5 μM	-	-	20
	PZ-Py	400/562	thioether	PBS (pH 7.3, 10 mM, containing 0.05% DMSO) 5 μM	0-80 μΜ	17.9 nm	21
	Cy7-NpS	750/790	thioether	100 mM PBS, pH 7.40 10 μM	0-0.384 μM	0.62 <u>+</u> 0.09 μM	22
	TP-HOCl 1	375/500	1,3- oxathiolane	PBS/EtOH (1:1, PH 7.4) 5 μM	0-200 nm	16.6 nm	23
	HPBD	455/585	1,3- oxathiolane	PBS buffer-CH ₃ CN (v/v=4/1, 20 mM PBS, pH 7.4) 10 μM	0-40 μΜ	50 nm	This work

References

- 1 L. Moberg and B. Karlberg, Anal. Chim. Acta., 2000, 407, 127-133.
- 2 S. Pan, M. J. Deen, R. Ghosh, Anal. Chem., 2015, 87, 10734-10737.
- 3 Y. R. Tang, Y. Y. Su, N. Yang, L. C. Zhang, Y. Lv, Anal. Chem., 2014, 86, 4528-4535.
- 4 J. L. Fan, H.Y. Mu, H. Zhu, J. Y. Wang, X. J, Peng., Analyst, 2015, 140, 4594-4598.
- 5 Y. Huang, P. S. Zhang, M. Gao, F. Zeng, A. J. Qin, S.Z. Wu and B. Z. Tang, *Chem. Commun.*, 2016, **52**, 7288-7291.
- 6 J. J. Hu, N.-K. Wong, M. Y. Lu, X. M. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Y.-T. Kao, J. G. Shen and D. Yang, *Chem. Sci.*, 2016, 7, 2094-2099.
- 7 H. Zhu, J. L. Fan, J. Y. Wang, H. Y. Mu and X. J. Peng, J. Am. Chem. Soc., 2014, 136, 12820-12823.
- 8 W.-C.Chen, P. Venkatesan, S.-P. Wu, Anal. Chim. Acta., 2015, 882, 68-75.
- 9 L. Yuan, W. Y. Lin, J. Z. Song and Y. T. Yang, Chem. Commun., 2011, 47, 12691-12693.
- S. I. Reja, V. Bhalla, A. Sharma, G. Kaur and M. K, *Chem. Commun.*, 2014, **50**, 11911-11914.
 X. H. Cheng, H. Z. Jia, T. Long, J. Feng, J. G. Qin and Z. Li, *Chem. Commun.*, 2011, **47**, 11978-11980.
- 12 G. H. Cheng, J. L. Fan, W. Sun, J. F. Cao, C. Hua and X. J. Peng, *Chem. Commun.*, 2014, 50, 1018-1020.
- 13 G. P. Li, D. J. Zhu, Q. Liu, L. Xue and H. Jiang, Org. Lett., 2013, 15, 2002-2005.
- 14 S. R. Liu and S. P. Wu, Org. Lett., 2013, 15, 878-881.
- 15 L. Yuan, W. Y. Lin, Y. N. Xie, B. Chen and J. Z. Song, Chem. Eur. J., 2012, 18, 2700-2706.
- 16 Q. L. Xu, K.-A. Lee, S. Y. Lee, K. M. Lee, W.-J. Lee, and J. Y. Yoon, J. Am. Chem. Soc., 2013, 135, 9944-9949.
- 17 Q. L. Xu, C. H. Heo, J. A. Kim, H. S. Lee, Y.Hu, D. Y. Kim, Anal. Chem., 2016, 88, 6615-6620.
- 18 J. Zhou, L. H. Li, W. Shi, X. H. Gao, X. H. Li and H. M. Ma, Chem. Sci., 2015, 6, 4884-4888.
- 19 L. J. Liang, C. Liu, X. J. Jiao, L.C. Zhao and X. S. Zeng, Chem. Commun., 2016, 52, 7982-7985.
- 20 Q. A. Best, N. Sattenapally, D. J. Dyer, C. N. Scott, and M. E. McCarroll, J. Am. Chem. Soc., 2013, 135, 13365-13370.
- 21 H. D. Xiao, K. Xin, H.F. Dou, G. Yin, Y. W. Quana and R. Y. Wang, *Chem. Commun.*, 2015, **51**, 1442-1445.
- 22 F. S. Tian, Y.Jia, Y.N. Zhang, W. Song, G. J. Zhao, Z. J. Qu, C.Y. Li, Y. H. Chen, P. Li, Biosensors and Bioelectronics, 2016, 86, 68-74.
- 23 L. Yuan, L. Wang, B. K.Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. J. Peng, Q.-H. Xu and Y.-T. Chang, J. Am. Chem. Soc., 2015, 137, 5930–5938.
- 24 This workccc

3. Structure characterizations of HPBD, HPBD-1, HPBD-2

Fig. S1. ¹H NMR spectrum of HPBD in d₆-DMSO.

Fig. S2. ¹³C NMR spectrum of **HPBD** in d₆-DMSO.

lass	Relative	Theoretical	Delta	Delta	Composition
	Intensity	Mass	[ppm]	[mmu]	
51.0725	100.0	251.0723	0.9	0.2	C11 H13 O2 N3 5
		251.0689	14.3	3.6	C14 H9 02 N3
\	*	251.0815	-35.8	-9.0	C15 H11 02 N2
N		251.0849	-49.2	-12.4	C12 H15 02 N2 S
1		251.0525	79.7	20.0	C16 H11 01 S1
	N.				
	L O				
	N				

Fig. S4. HRMS (EI) spectrum of HPBD in Methanol.

Fig.S5. ¹H NMR spectrum of HPBD-1 in d₆-DMSO.

Fig. S6. ¹³C NMR spectrum of HPBD-1 in d₆-DMSO.

File : D:\Xc Full ms [201	alibur\data\lf-1 500 - 222.500]	160315-206-hr-av2.R - Range: 201.500	AW - 222.500		
Scan No. 1 c Mass	f 1 Relative	Theoretical	Delta	Delta	Composition
	Intensity	Mass	[ppm]	[mmu]	
206.0806	103.8	206.0798	3.9	0.8	C, H10 02 N4
		206.0838	-15.6	-3.2	C14 H10 N2
N_		206.0726	38.9	8.0	C, H, O,
N		206.0713	45.4	9.4	C, H, N,
N		206.0924	-57.1	-11.8	C_{10} H ₁₂ O ₂ N ₃
он					

Fig.S8. HRMS (EI) spectrum of HPBD-1 in Methanol.

Fig.S9.¹H NMR spectrum of **HPBD-2** in d₆-DMSO.

Fig. S10. ¹³C NMR spectrum of HPBD-2 in d₆-DMSO.

Fig.S11. EI spectrum of HPBD-2 in Methanol.

lass	Relative	Theoretical	Delta	Delta	Composition
	Intensity	Mass	[ppm]	[mmu]	
81,1014	100.0	281.1020	-2.0	-0.6	C, H, O, N,
		281.0961	18.9	5.3	C21 H13 01
N		281.1073	-21.1	-5.9	C20 H13 N2
	N	281.0947	23.6	6.6	C19 H11 N3
	O N	281.1145	-46.8	-13.1	C, H, O, N,

Fig.S12. HRMS (EI) spectrum of HPBD-2 in Methanol.

4. Detection limit and linear range of HPBD for HOCl detection.

The spectrum of free **HPBD** (10 μ M) was collected for 10 times to determine the background noise σ . Then the solution was treated with various concentration of HOCl from 0-40 μ M. A linear regression curve was then fitted according to the emission intensity at 585 nm in the range of 0-40 μ M. As exhibited in Fig.S13, **HPBD** can quantitatively detect HOCl in the range from 0 to 40 μ M with good linearity (R² = 0.99604).

Another linear regression curve was then fitted according to the data in the range of HOCl from 0 to 4 μ M, and the slope of the curve was obtained (Fig. S14). The detection limit (3 σ /slope) was then determined to be 50 nM.

Fig. S13. The titration curve plotted with the fluorescnece intensity of HPBD (10 μ M) at 585 nm as a function of HOCl concentration in range of 0-40 μ M. λ_{ex} = 455 nm.

Fig. S14 The titration curve plotted with the fluorescnece intensity of HPBD (10 μ M) at 585 nm as a function of HOC1 concentration in range of 0-4 μ M. λ_{ex} = 455 nm.

5. Colorimetric response of HPBD to various ROS and RNS

Fig.S15 (a) Absorption spectra of **HPBD** (10 μ M) upon adding various ROS and RNS (40 μ M) in a PBS buffer-CH₃CN(v/v=4/1, 20 mM PBS, pH 7.4). (b) Colorimetric (upper row) and fluorometric (lower row, irradiated at 365 nm) photographs of **HPBD** (25 μ M) in a PBS buffer-CH₃CN (v/v=4/1, 20 mM PBS, pH 7.4). Left to right: **HPBD**, HOCl, OH, H₂O₂, ¹O₂, NO₂⁻, NO₃⁻, NO, ONOO⁻, O₂⁻ and t-BuOOH.

6. Sensing mechanism study

Fig.S16. ESI-MS spectrum of HPBD/HOCl mixture.

Fig.S17. Mechanistic study of probe reacting with HOCl and indentification of adduct using HPLC method. (a) 100 μ M probe **HPBD**; (b) 100 μ M **DBDC**; (c) the reaction products of 100 μ M probe with HOCl. Detection: UV-vis (398 nm) detector. Flow rate: 1mL/min. T: 20 °C. Injection volume: 100 μ L. Mobile phase: methanol/water=80/20 (ν/ν).

7. MTT assay

Fig. S18. Cytotoxicity assay of RAW 264.7 cells were treated in the presence of HPBD (0-25 μ M) incubated for 24 h.