## Supplementary material for:

## A RAFT Copolymerization of NIPAM and HPMA and Evaluation of

## Thermo-responsive Properties of Poly(NIPAM-co-HPMA)

Bao Luan,<sup>a,b,c</sup> Benjamin W. Muir,<sup>a</sup> Jin Zhu,<sup>b</sup> and Xiaojuan Hao<sup>a\*</sup>

<sup>a</sup>CSIRO Manufacturing, Clayton, Victoria, 3168, Australia.

<sup>b</sup>Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.

<sup>c</sup>Graduate University of Chinese Academy of Sciences, Beijing 100049, China.

\*Email: Xiaojuan.hao@csiro.au.



**Figure S1.** <sup>1</sup>H NMR spectra of the NIPAM-*co*-HPMA ( $F_{HPMA}$  = 0.56;  $DP_{NMR}$  = 165): (a) **P**<sub>B</sub>-10 (b) **P**<sub>B,SH</sub>-10.





**Figure S2.** Kinetic plots of  $\ln([M]_0/[M]_t)$  *vs.* time in the RAFT copolymerization of NIPAM and HPMA: (a) 20 mol% HPMA, target MW 12k; (c) 20 mol% HPMA, target MW 30k; (e) 20 mol% HPMA, target MW 60k; (g) 50 mol% HPMA, target MW 12k; (i) 50 mol% HPMA, target MW 60k; plots of the theoretical number-average molecular weight ( $M_{n,theo}$ ), the experimental number-average molecular weight ( $M_{n,GPC}$ ) and PDI ( $M_w/M_n$ ) *vs.* total monomer conversions in the RAFT copolymerization of NIPAM and HPMA: (b) 20 mol% HPMA, target MW 12k; (d) 20 mol% HPMA, target MW 30k; (f) 20 mol% HPMA, target MW 60k; (h) 50 mol% HPMA, target MW 12k; (j) 50 mol% HPMA, target MW 60k.



**Figure S3.** GPC traces of NIPAM-co-HPMA copolymers from the kinetic study of the copolymerization of NIPAM and HPMA with 50 mol % HPMA in dioxane/water, target MW 30k.

| Entry                            | Time | f(NIPAM | Conv.(%) <sup>b</sup> |        | <i>F</i> (HPMA)℃ | $M_{n,theo}^{d}$ | Λ <i>Λ</i> Α              |                                                    |
|----------------------------------|------|---------|-----------------------|--------|------------------|------------------|---------------------------|----------------------------------------------------|
|                                  | (h)  | /HPMA)ª | NIPAM                 | M HPMA | (%)              | (g/mol)          | <i>IVI</i> n <sup>C</sup> | <i>۱۷۱<sub>w</sub>/۱۷۱<sub>n</sub><sup>e</sup></i> |
| target <i>M</i> <sub>n</sub> 12k | 2    |         | 6                     | 8      | 26               | 1000             | 2100                      | 1.05                                               |
|                                  | 4    |         | 11                    | 23     | 34               | 1900             | 3200                      | 1.16                                               |
|                                  | 6    |         | 17                    | 31     | 32               | 2600             | 4200                      | 1.19                                               |
|                                  | 8    | 4/1     | 27                    | 48     | 30               | 4100             | 5300                      | 1.19                                               |
|                                  | 10   |         | 32                    | 54     | 30               | 4600             | 6300                      | 1.18                                               |
|                                  | 12   |         | 33                    | 56     | 30               | 4800             | 7100                      | 1.18                                               |
|                                  | 15   |         | 39                    | 58     | 27               | 5400             | 8100                      | 1.17                                               |
|                                  | 18   |         | 42                    | 63     | 27               | 5800             | 8900                      | 1.18                                               |
|                                  | 2    |         | 5                     | 10     | 66               | 1200             | 3400                      | 1.18                                               |
|                                  | 4    |         | 17                    | 25     | 60               | 2700             | 5900                      | 1.26                                               |
|                                  | 6    |         | 26                    | 38     | 59               | 4200             | 8000                      | 1.26                                               |
|                                  | 8    | 1/1     | 36                    | 54     | 60               | 5700             | 9700                      | 1.25                                               |
|                                  | 10   |         | 46                    | 63     | 58               | 6800             | 10900                     | 1.25                                               |
|                                  | 12   |         | 50                    | 68     | 57               | 7300             | 12000                     | 1.24                                               |
|                                  | 15   |         | 52                    | 71     | 58               | 7600             | 12900                     | 1.23                                               |
|                                  | 18   |         | 56                    | 74     | 57               | 8000             | 13700                     | 1.23                                               |
|                                  | 2    |         | 16                    | 9      | 12               | 4500             | 3600                      | 1.18                                               |
|                                  | 4    |         | 26                    | 25     | 19               | 7800             | 7000                      | 1.21                                               |
|                                  | 6    |         | 34                    | 37     | 21               | 10600            | 10300                     | 1.19                                               |
|                                  | 8    | 4/1     | 41                    | 47     | 22               | 13000            | 13000                     | 1.19                                               |
|                                  | 10   |         | 47                    | 54     | 23               | 14700            | 14800                     | 1.21                                               |
|                                  | 12   |         | 57                    | 64     | 22               | 17700            | 16500                     | 1.2                                                |
|                                  | 15   |         | 59                    | 66     | 22               | 18300            | 18200                     | 1.22                                               |
|                                  | 18   |         | 59                    | 71     | 23               | 18700            | 19600                     | 1.23                                               |
| target M <sub>n</sub> 30k        | 2    |         | 8                     | 2      | 22               | 1700             | 6400                      | 1.32                                               |
|                                  | 4    |         | 18                    | 12     | 39               | 4700             | 11600                     | 1.31                                               |
|                                  | 6    |         | 28                    | 29     | 51               | 8800             | 15800                     | 1.28                                               |
|                                  | 8    | 1/1     | 34                    | 40     | 54               | 11500            | 19700                     | 1.26                                               |
|                                  | 10   |         | 41                    | 52     | 56               | 14400            | 22000                     | 1.26                                               |
|                                  | 12   |         | 46                    | 56     | 55               | 15700            | 23800                     | 1.26                                               |
|                                  | 15   |         | 54                    | 64     | 54               | 17900            | 25600                     | 1.26                                               |
|                                  | 18   |         | 58                    | 72     | 55               | 19900            | 26800                     | 1.27                                               |
| target <i>M</i> <sub>n</sub> 60k | 2    |         | 12                    | 16     | 25               | 8000             | 8800                      | 1.22                                               |
|                                  | 4    |         | 24                    | 32     | 25               | 15900            | 16500                     | 1.2                                                |
|                                  | 6    |         | 38                    | 52     | 26               | 24700            | 22700                     | 1.19                                               |
|                                  | 8    | 4/1     | 45                    | 57     | 24               | 29100            | 30300                     | 1.22                                               |
|                                  | 10   |         | 48                    | 61     | 24               | 30800            | 31600                     | 1.27                                               |
|                                  | 12   |         | 50                    | 64     | 24               | 32300            | 32800                     | 1.13                                               |
|                                  | 15   |         | 53                    | 68     | 24               | 34100            | 32800                     | 1.13                                               |
|                                  | 18   |         | 55                    | 71     | 25               | 35400            | 36600                     | 1.28                                               |
|                                  | 2    |         | 9                     | 15     | 63               | 7400             | 13600                     | 1.41                                               |

| 4  |     | 13 | 23 | 64 | 11400 | 22600 | 1.37 |
|----|-----|----|----|----|-------|-------|------|
| 6  |     | 25 | 35 | 58 | 18600 | 32000 | 1.25 |
| 8  | 1/1 | 27 | 43 | 62 | 21600 | 34900 | 1.31 |
| 10 |     | 31 | 49 | 61 | 24700 | 38000 | 1.3  |
| 12 |     | 35 | 57 | 62 | 28500 | 41800 | 1.29 |
| 15 |     | 43 | 59 | 58 | 31400 | 44800 | 1.28 |
| 18 |     | 48 | 67 | 58 | 35200 | 46500 | 1.29 |

<sup>a</sup> Monomer feed molar ratio at time zero.

<sup>b</sup> Determined by <sup>1</sup>H NMR spectroscopy.

<sup>c</sup> Determined by the formula:

F(HPMA) = [f(HPMA/NIPAM)\*Conv.(HPMA)]/[f(HPMA/NIPAM)\*Conv.(HPMA) + Conv.(NIPAM)].

<sup>d</sup> Determined by the formula:  $M_{n,theo} = [([M]_{NIPAM}/[CPADB] \times Conv._{NIPAM} \times M_{NIPAM}) + ([M]_{HPMA}/[CPADB] \times M_{NIPAM} \times M_{NIPAM}) + ([M]_{HPMA}/[CPADB] \times M_{NIPAM} \times M_{NIPAM} \times M_{NIPAM} \times M_{NIPAM}) + ([M]_{HPMA}/[CPADB] \times M_{NIPAM} \times M_{NIPAM}$ 

 $Conv._{HPMA} \times M_{HPMA}) + (M_{CPADB})].$ 

<sup>e</sup> Molar mass (in PMMA equivalents) and dispersity obtained by DMAc GPC using PMMA standard.



**Figure S4.** UV-visible absorbance spectra of RAFT polymer with RAFT agent end-group  $P_B 10$  (blue line) and thiol end group  $P_{B,SH} 10$  (red line), measured at concentration of 2 mg/mL in deionized water.



**Figure S5.** UV-visible absorbance of RAFT polymers with RAFT end group ( $P_A$ ,  $P_B$ , and  $P_c$ ) and thiol end group ( $P_{A,SH}$ ,  $P_{B,SH}$ , and  $P_{c,SH}$ ), measured at wavelength of 308 nm and at a concentration of 2 mg/mL in deionized water.



Figure S6. GPC traces of the NIPAM-*co*-HPMA ( $F_{HPMA} = 0.56$ ) before ( $P_B 10$ ,  $M_n = 24900$ ,  $M_w/M_n = 1.24$ ) and after aminolysis with hexylamine ( $P_{B,SH} 10$ ,  $M_n = 27500$ ,  $M_w/M_n = 1.25$ ).





**Figure S7.** Transmittance of the (co)polymers as a function of temperature determined in deionized water with a polymer concentration of c = 5 mg/mL: (a)  $P_{A}$ , (b)  $P_{B}$ , (c)  $P_{C}$ , (d)  $P_{A,SH}$ , (e)  $P_{B,SH}$ , and (f)  $P_{C,SH}$ .