Supplementary Information for

Facile synthesis of the Basolite F300-like Nanoscale Fe-BTC Framework

and its Lithium Storage Properties

Xiaoshi Hu, ¹ Xiaobing Lou, ¹ Chao Li, ¹ Yanqun Ning, ¹ Yuxing Liao, ¹ Qun Chen, ¹Eugène S Mananga, ² Ming Shen¹* and Bingwen Hu¹

- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, School of Physics and Materials Science, Ministry of Education, East China Normal University, Shanghai 200062, PR China.
- The Graduate Center, Physics, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States

*Correspondence to be addressed to: mshen@phy.ecnu.edu.cn.

Figure S1. Acetate-Model picture of Fe-BTC building block in which iron atoms are inside the polyhedra, oxygen atoms are green, carbon atoms are yellow, and hydrogen atoms are pink.

Figure S2. PXRD pattern of Fe-BTC product obtained using $FeCl_3 \cdot 6H_2O$ as the iron source.

Figure S3. (a) EDS spectra and (b) EDS mapping images for a selected region of Basolite F300.

Figure S4. EDS spectra and EDS mapping images for a selected region of the synthetic Fe-BTC.

Figure S5. High-resolution SEM imagines of Basolite F300: enlargements of the (a) top and (b) left bottom particles of Figure 5a, respectively.

Figure S6. High-resolution SEM imagine of the synthetic Fe-BTC material.

Figure S7. Cycling performance of Fe-BTC MOF at high current density (0.5 A g^{-1} and 1 A g^{-1}).

Figure S8. Cycling performance of the bulk material Basolite F300 at the current density of 500 mA g⁻¹.

MOFs	Voiltage / V vs Li ⁺ /Li	Rate / C or mA g ⁻¹	Capacity retention /	Cycle number	Refs.
			mA g⁻¹		
Zn-MOF-crown	0.01-3.0	500	239	500	1
Zn₄O(1,3,5-	0.05-1.6	50	105	50	2
benzenetribenzoates)					
Li terephthalate	0.7-3.0	1C	234	50	3
Li trans-trans-muconate	0.7-3.0	1C	125	50	3
Zn ₃ (HCOO) ₆	0.005-3.0	60	560	60	4
Co ₃ (HCOO) ₆	0.005-3.0	60	390	60	4
Zn _{1.5} Co _{0.5} (HCOO) ₆	0.005-3.0	60	450	60	4
Ni-1,4,5,8-	0.01-3.0	100	246	80	5
naphthalenetetracarboxyla					
tes					
Li-1,4,5,8-	0.01-3.0	100	458	80	5
naphthalenetetracarboxyla					
tes					
Li/Ni-1,4,5,8-	0.01-3.0	100	475	80	5
naphthalenetetracarboxyla					
tes					
Mn(tfbdc)(4,4'-bpy)(H ₂ O) ₂)	0.01-2.5	50	390	50	6
CADS nanowire	0.8-2.8	57.6	177	110	7
Co ₂ (OH) ₂ BDC	0.005-3.0	50	650	100	8
[Li ₆ (pda)₃]·2EtOH	0.2-2.0	30	160	50	9
$[Cu_2(C_8H_4O_4)_4]_n$	0.01-2.5	24	227	50	10
2,6-Naph-(COOLi) ₂	0.5-2.0	1C	~210	10	11
Ni-Me₄bpz	0.01-3.0	50	120	100	12
Zn(IM) _{1.5} (abIM) _{0.5}	0.01-3.0	100, 400	190, ~75	200, 200	13
Asp-Cu	0.01-3.0	50	233	100	14
Mn-BTC	0.01-3.0	103, 1030	694, 400	100, 100	15
Mn(3,5-PDC) ·2H₂O	0.05-3.0	300	310	115	16
[Mn2(2,3-pdc) ₂ (H ₂ O)3] _n ·	0.05-3.0	100	457.2	100	17
2nH₂O					
Ni-PTA	0.01-3.0	100	620	100	18
Li4(H ₂ O) ₄ (BTCA)	0.01-3.0	~100	93	30	19
[Li ₆ (pda)₃] · 2EtOH	0.02-2.0	30	160	50	20

 Table S1. Metal organic frameworks (MOFs) as anode materials in LIBs.

This work	0.01-3.0	100, 500, 1000	1021, 436,	400, 400 ,400	-
			408		

Supplementary References

1 L. Bai, B. Tu, Y. Qi, Q. Gao, D. Liu, Z. Liu, L. Zhao, Q. Li and Y. Zhao, Chem. Commun., 2016, **52**, 3003-3006.

- 2 X. Li, F. Cheng, S. Zhang, J. Chen, J. Power Sources, 2006, 160, 542-547.
- 3 M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot, J. M. Tarascon, Nat. Mater., 2009, 8, 120-125.
- 4 K. Saravanan, M. Nagarathinam, P. Balaya, J. J. Vittal, J. Mater. Chem., 2010, 20, 8329-8335.
- 5 X. Han, F. Yi, T. Sun, J. Sun, Electrochem. Commun., 2012, 25, 136-139.
- 6 Q. Liu, L. Yu, Y. Wang, Y. Ji, J. Horvat, M. Cheng, X. Jia, G. Wang, Inorg. Chem., 2013, 52, 2817-2822.
- 7 C. Luo, R. Huang, R. Kevorkyants, M. Pavanello, H. He, C. Wang, Nano Lett., 2014, 14, 1596-1602.
- 8 L. Gou, L. Hao, Y. X. Shi, S. Ma, X. Fan, L. Xu, D. Li, K. Wang, J. Solid State Chem., 2014, 210, 121-124.
- 9 L. Gou, H. Zhang, X. Fan, D. Li, Inorg. Chim. Acta, 2013, 394, 10-14.
- 10 R. S. Kumar, C. Nithya, S. Gopukumar, M. Anbu, Energy Technology, 2014, 2, 921-927.
- 11 N. Ogihara, T. Yasuda, Y. Kishida, T. Ohsuna, K. Miyamoto, N. Ohba, Angew. Chem. Int. Ed., 2014, 53, 11467-11472.
- 12 T. An, Y. Wang, J. Tang, Y. Wang, L. Zhang, G. Zheng, J. Colloid Interf. Sci., 2015, 445, 320-325.
- 13 Y. Lin, Q. Zhang, C. Zhao, H. Li, C. Kong, C. Shen, L. Chen, Chem. Commun., 2015, **51**, 697-699.
- 14 C. Zhao, C. Shen, W. Han, RSC ADV., 2015, 5, 20386-20389.
- 15 S. Maiti, A. Pramanik, U. Manju, S. Mahanty, ACS Appl. Mater. Interfaces, 2015, 7, 16357-16363.
- 16 H. Fei, X. Liu, Z. Li and W. Feng, Dalton Trans, 2015, 44, 9909-9914.
- 17 H. Fei, Z. Li and X. Liu, J. Alloy. Compd., 2015, 640, 118-121.
- 18 Y. Zhang, Y. Niu, T. Liu, Y. Li, M. Wang, J. Hou and M. Xu, Mater. Lett., 2015, 161, 712-715.

19 P. Cheng, W. Lin, F. Tseng, C. Kao, T. Chang, D. Senthil Raja, W. Liu and C. Lin, Dalton Trans., 2013, **42**, 2765-2772.

20 L. Gou, H. Zhang, X. Fan and D. Li, Inorg. Chim. Acta, 2013, 394, 10-14.