## **Supporting information**

### For

# An extremely efficient and green method for the acylation of secondary alcohols, phenols and naphthols with deep eutectic solvent as catalyst

## Table of contents

| Section S1. Chemicals, supplies and instruments Section S2. General procedure | S1<br>S2       |
|-------------------------------------------------------------------------------|----------------|
|                                                                               |                |
| Section S4. GC-MS and NMR spectra                                             | <b>S10-S46</b> |

#### Section S1. Chemicals, supplies and instruments

### Chemicals and supplies.

(2-Hydroxyethyl)trimethylammonium (Choline chloride, extra pure  $\geq$  99.0%) was obtained from HiMedia Laboratories Pvt. Ltd. (India). Zinc chloride (reagent great  $\geq$  98%) was obtained from Sigma-Aldrich. Propionic anhydride (purum  $\geq$  96.0%) (NT)), acetic anhydride (reagent Plus<sup>®</sup>,  $\geq$  99%), butyric anhydride (purum  $\geq$  97%) (NT)), benzoic anhydride (purity  $\geq$  95%), isopropanol (ACS reagent,  $\geq$  99.5%), 2butanol (assay 99%), 2-pentanol (98%), (+/-)-2-hexanol (99%), 2-heptanol (assay, cyclohexanol (reagent Plus<sup>®</sup>,  $\geq$  99%), isoborneol (assay, 98%), 1-98%). phenylethanol (98%), diphenylmethanol (assay, 99%), 2-phenyl-2-propanol (GC >97%), 1,1-diphenylethanol (assay, 98%), 1-hydroxybiphenyl (assay, 99%), 2naphthol (assay, 99%), 4-methoxyphenol (reagent Plus<sup>®</sup>, 99%), myo-inositol (assay, 99%) were obtained from Sigma-Adrich. L-(-)-Menthol (99%) were obtained from Capot Janssen Chimica. Silica gel 230 - 400 mesh, for flash chromatography) was obtained from HiMedia Laboratories Pvt. Ltd. (India). TLC (silica gel 60  $F_{254}$ ) was obtained from Merck. Ethyl acetate (purity  $\geq 99.5\%$ ), hexane ( $\geq$  95%), chloroform (purity  $\geq$  99%) were obtained from Xilong Chemical Co., Ltd (China). Chloroform-d, 99.8 Atom %D, stab. with Ag was obtained from Armar (Switzerland).

All starting materials, reagent and solvents were used without further purification.

### Analytical techniques.

The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Advance 500 instruments using CDCl<sub>3</sub> as solvent and solvent peaks or TMS as internal standards. HRMS (ESI) data were recorded on Bruker micrOTOF-QII MS at 80 eV. Infrared (IR) spectra were recorded on a Bruker Alpha FTIR spectrometer.

GC–MS analyses were performed on an Agilent GC System 7890 equipped with a mass selective detector Agilent 5973N and a capillary DB–5MS column (30 m x  $250 \ \mu m \ge 0.25 \ \mu m$ ).

#### Section S2. General procedure

1-Phenylethanol (122 mg, 1.0 mmol) was treated with propionic anhydride (136 mg, 1.05 mmol) in the presence of [CholineCl][ZnCl<sub>2</sub>]<sub>3</sub> (191 mg, 0.35 mmol) for 30 min at room temperature under solvent-free magnetic stirring. The mixture was diluted with diethyl ether (10 x 5 mL). The ether solution was decanted, washed with H<sub>2</sub>O (10 mL), aqueous NaHCO<sub>3</sub> (2 x 20 mL), and brine (10 mL), and dried over MgSO<sub>4</sub>. The solvent was removed on a rotary evaporator to afford the desired product (432 mg, 96%). The purity and identity of the product were confirmed by <sup>1</sup>H and <sup>13</sup>C NMR, and MS. The recovered catalyst was activated by heating under reduced vacuum at 80 °C for 6 hours and reused for consecutive cycles.

Section S3. Spectral data

### [CholineCl][ZnCl<sub>2</sub>]<sub>3</sub><sup>1-3</sup>

 $\begin{bmatrix} I \\ HO & I \\ CI^{-} \end{bmatrix} [ \ ZnCl_2 ]_3$ 

IR  $v_{\text{max}}$  3543, 1619, 1475 cm<sup>-1</sup>.

HRMS (ESI): [Choline + H]<sup>+</sup> 105.0504

[ZnCl<sub>3</sub>]<sup>-</sup> 170.8356, [Zn<sub>2</sub>Cl<sub>5</sub>]<sup>-</sup> 306.6968, [Zn<sub>3</sub>Cl<sub>7</sub>]<sup>-</sup> 444.5604

<sup>1</sup>**H-NMR** (500 MHz, DMSO-*d6*): δ 5.23 (s, 1H), 3.80 (m, 2H), 3.33 (m, 2H), 3.04 (s, 9H).

<sup>13</sup>C-NMR (125 MHz, DMSO-*d6*): δ 67.8, 55.9, 54.2, 54.1, 54.0.

### 1-Phenylethyl acetate<sup>4-6</sup>

O U

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35–7.34 (m, 4H), 7.30–7.27 (m, 1H), 5.90–5.86 (q, J = 6.5 Hz, 1H), 2.07 (s, 3H), 1.54 (d, J = 6.5 Hz, 3H). <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.2, 141.7, 128.5, 127.8, 126.1, 72.3, 22.2, 21.3. GC-MS (EI, 70 eV) *m/z*: 164, 122, 104, 77, 51, 43.

1-Phenylethyl butyrate<sup>4,7</sup>

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (m, 4H), 7.30–7.27 (m, 1H), 5.92–5.88 (q, J = 6.5 Hz, 1H), 2.32–2.29 (m, 2H), 1.68–1.62 (q, J = 7.5 Hz, 2H), 1.54–1.53 (d, J = 6.5 Hz, 3H), 0.95–0.92 (t, J = 7.5 Hz, 3H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 172.9, 141.9, 128.5, 127.8, 126.0, 72.0, 37.1, 22.3, 18.5, 13.4.

GC-MS (EI, 70 eV) *m/z*: 192, 122, 105, 77, 71, 51, 43.

#### 1-Phenylethyl benzoate<sup>4,5,8</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.09 (d, *J* = 7 Hz, 2H), 7.57–7.54 (t, *J* = 7.5 Hz, 1H), 7.46–7.43 (t, *J* = 7.5 Hz, 4H), 7.39–7.36 (t, *J* = 7.5 Hz, 2H), 7.32–7.29 (t, *J* = 7 Hz, 1H), 6.16–6.12 (q, *J* = 6.5 Hz, 1H), 1.68 (d, *J* = 6.5 Hz, 3H). <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 141.8, 132.9, 130.6, 129.7, 128.6, 128.3, 127.9, 126.1, 72.9, 22.4.

GC-MS (EI, 70 eV) *m/z*: 226, 105, 77, 51.

#### Isopropyl propionate<sup>9,10</sup>

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.00–4.95 (m, 1H), 2.27–2.23 (q, J = 7 Hz, 2H), 1.20–1.19 (d, J = 7 Hz, 6H), 1.10–1.08 (t, J = 7 Hz, 3H). <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.0, 67.3, 27.9, 21.8, 9.1 **GC-MS** (EI, 70 eV) m/z: 101, 75, 57, 43. sec-Butyl propionate<sup>11,12</sup>

<sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.85–4.79 (m, 1H), 2.30–2.25 (q, J = 7.5 Hz, 2H), 1.60–1.48 (m, 2H), 1.18–1.17 (d, J = 6.5 Hz, 2H), 1.13–1.10 (t, J = 7.5 Hz, 3H), 0.88–0.86 (t, J = 7.5 Hz, 3H). <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.2, 71.9, 28.8, 27.9, 19.4, 9.6, 9.2 GC-MS (EI, 70 eV) m/z: 101, 75, 57, 41.

### 2-Pentyl propionate<sup>13,14</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.93–4.87 (m, 1H), 2.30–2.25 (q, J = 8.0 Hz, 2H), 1.60–1.52 (m, 1H), 1.47–1.40 (m, 1H), 1.38–1.28 (m, 2H), 1.19–1.18 (d, J = 6.5 Hz, 3H), 1.13–1.10 (t, J = 8.0 Hz, 3H), 0.91–0.88 (t, J = 7.0 Hz, 3H). <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.2, 70.5, 38.1, 27.9, 20.0, 18.6, 13.9, 9.2. **GC-MS** (EI, 70 eV) m/z: 101, 75, 70, 57, 43.

### 2-Hexyl propionate<sup>15</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.92–4.86 (m, 1H), 2.31–2.26 (q, *J* = 7.5 Hz, 2H), 1.60–1.54 (m, 1H), 1.50–1.44 (m, 1H), 1.32–1.26 (m, 4H), 1.19–1.18 (d, *J* = 6.5 Hz, 3H), 1.14–1.11 (t, *J* = 8 Hz, 3H), 0.90 – 0.87 (t, *J* = 7 Hz, 3H).

<sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) *δ* 174.2, 70.8, 35.6, 28.7, 27.9, 27.6, 22.5, 20.0, 9.2, 8.4.

GC-MS (EI, 70 eV) *m/z*: 101, 84, 57, 43.

2-Heptyl propionate<sup>13</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.91–4.85 (m, 1H), 2.49–2.45 (q, J = 7.5 Hz, 2H), 2.30–2.25 (q, J = 7.5 Hz, 2H). 1.58–1.52 (m, 1H), 1.47–1.40 (m, 1H), 1.28–1.25 (m, 4H), 1.17 (d, J = 2 Hz, 3H), 1.13–1.10 (t, J = 7.5 Hz, 3H), 0.87–0.85 (t, J = 6.5 Hz, 3H).

<sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) δ 174.3, 70.9, 36.0, 31.7, 28.8, 28.1, 25.2, 22.6, 20.1, 9.3, 8.5.

GC-MS (EI, 70 eV) *m/z*: 101, 75, 70, 57, 41.

### Cyclohexyl propionate<sup>16,17</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.74–4.69 (m, 1H), 2.47–2.42 (q, *J* = 7.5 Hz, 2H), 2.28–2.23 (m, 2H), 1.83–1.79 (m, 2H), 1.70–1.66 (m, 2H), 1.38–1.30 (m, 4H), 1.16–1.13 (t, *J* = 7.5 Hz, 3H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 173.9, 72.3, 31.6, 28.7, 27.9, 25.4, 23.7, 9.2, 8.3.
GC-MS (EI, 70 eV) m/z: 82, 75, 67, 57, 41.

### 2-Isopropyl-5-methylcyclohexyl propionate<sup>18,19</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.69–4.64 (m, 1H), 2.49–2.45 (q, J = 7.0 Hz, 1H), 2.31–2.26 (m, 2H), 1.98–1.95 (d, J = 12.0 Hz, 1H), 1.88–1.82 (m, 1H), 1.67–1.63 (m, 2H), 1.51–1.44 (m, 1H), 1.38–1.32 (m, 1H), 1.13–1.10 (t, J = 7.5 Hz, 3H), 1.08–1.00 (m, 1H), 0.97–0.93 (t, J = 11.5 Hz, 1H), 0.89–0.87 (m, 6H), 0.75–0.74 (d, J = 7.0 Hz, 3H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 174.2, 74.1, 47.2, 41.1, 34.4, 31.5, 28.8, 28.1, 26.4, 23.6, 22.1, 20.9, 16.5, 9.4, 8.5.

GC-MS (EI, 70 eV) *m/z*: 138, 123, 109, 95, 81, 69, 57, 41.

### 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl propionate<sup>20</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ 4.67–4.65 (t, *J* = 3.5 Hz, 1H), 2.31–2.27 (q, *J* = 7.5 Hz, 2H), 1.81–1.77 (m, 1H), 1.74–1.71 (m, 2H), 1.68–1.65 (m, 1H), 1.56–1.51 (m, 1H), 1.16–1.07 (m, 5H), 0.97 (s, 3H), 0.83 (s, 6H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 173.9, 80.7, 48.6, 46.9, 45.0, 38.8, 33.7, 28.1, 27.0, 20.1, 19.9, 11.3, 9.2.

GC-MS (EI, 70 eV) m/z: 154, 136, 121, 108, 95, 81, 69, 57, 41.

#### 1-Phenylethyl propionate<sup>4,21</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37–7.36 (d, J = 7.0 Hz, 2H), 7.36–7.35 (d, J = 6.5 Hz, 2H), 7.31–7.29 (m, 1H), 5.93–5.89 (q, J = 7.0 Hz, 1H), 2.39–2.33 (m, 2H), 1.55–1.53 (d, J = 7.0 Hz, 3H), 1.16–1.13 (t, J = 7.5 Hz, 3H).

<sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) δ 173.7, 141.9, 128.5, 128.2, 127.8, 126.3, 126.0, 72.1, 27.9, 22.3, 9.1.

GC-MS (EI, 70 eV) *m/z*: 178, 122, 105, 77, 57, 51, 43.

### Benzhydryl propionate<sup>20,22</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35–7.34 (m, 8H), 7.30–7.27 (m, 2H), 6.90 (s, 1H), 2.48–2.43 (t, J = 8.0 Hz, 2H), 1.20–1.17 (m, 3H).

<sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) *δ* 173.4, 140.4, 130.0, 128.5, 127.8, 127.1, 27.9, 9.1.

GC-MS (EI, 70 eV) *m/z*: 240, 184, 166, 152, 105, 77, 57.

#### $\alpha$ -D-glucopyranose pentapropanoate<sup>23</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.32 (d, J = 3.7 Hz, 1H), 5.48 – 5.44 (t, J = 9.7 Hz, 1H), 5.15 – 5.11 (m, 1H), 5.10 – 5.07 (m, 1H), 4.25 – 4.22 (dd, J = 13.0 Hz, 4.7 Hz, 1H), 4.10 – 4.06 (m, 2H), 2.44 – 2.40 (q, J = 15.2 Hz, 2H), 2.37 – 2.31 (m, 2H), 2.30 – 2.20 (m, 6H), 1.18 – 1.15 (t, J = 7.6 Hz, 3H), 1.12 – 1.09 (t, J = 7.6 Hz, 3H), 1.07 – 1.03 (m, 9H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 174.0, 173.6, 173.0, 173.0, 172.2, 89.0, 70.0, 69.7, 69.2, 67.6, 61.4, 27.5, 27.4, 27.3, 27.2, 9.1, 9.0, 8.9, 8.9, 8.8.

#### Naphthalen-2-yl propionate<sup>22</sup>



<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) *δ* 7.85 (m, 2H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 2.2 Hz, 1H), 7.48 (m, 2H), 7.24 (dd, *J* = 8.8 Hz, 2.2 Hz, 1H), 2.66 (q, *J* = 7.6 Hz, 2H), 1.32 (t, *J* = 7.6 Hz, 3H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 173.1, 148.5, 133.8, 131.5, 129.4, 127.78, 127.7, 126.5, 125.7, 121.2, 118.5, 27.9, 9.1.

GC-MS (EI, 70 eV) *m/z*: 200, 144, 115, 89, 57.

#### 4-Methoxyphenyl propionate<sup>24</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.02 – 6.98 (m, 2H), 6.90 – 6.86 (m, 2H), 3.79 (s, 3H), 2.57 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 173.3, 157.2, 144.3, 122.3, 114.4, 55.6, 27.7, 9.1.

GC-MS (EI, 70 eV) *m/z*: 180, 124, 109, 81, 57.

Cyclohexane-1,2,3,4,5,6-hexayl hexapropionate<sup>25</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.60 – 5.59 (t, J = 2.8 Hz, 1H), 5.54 – 5.50 (t, J = 10.2 Hz, 2H), 5.24 – 5.20 (t, J = 9.9 Hz, 1H), 5.14 – 5.12 (m, 2H), 2.27 – 2.20 (m, 12H), 1.08 – 1.04 (m, 18H).

<sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ 173.3, 173.1, 173.1, 172.8, 70.6, 69.4, 68.5, 68.2, 27.5, 27.4, 27.3, 27.2, 9.4, 9.1, 9.1, 8.8.

[1,1'-Biphenyl]-2-yl propionate<sup>26</sup>



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 – 7.41 (m, 5H), 7.41 – 7.39 (m, 1H), 7.37 (ddd, J = 5.4, 3.1, 1.6 Hz, 1H), 7.33 (dd, J = 7.5, 1.4 Hz, 1H), 7.16 (dd, J = 8.0, 1.3 Hz, 1H), 2.39 (q, J = 7.6 Hz, 2H), 1.08 (t, J = 7.6 Hz, 3H).

<sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) δ 172.8, 147.9, 137.7, 135.0, 130.9, 129.0, 128.5, 128.2, 127.4, 126.3, 122.9, 27.7, 9.0.

GC-MS (EI, 70 eV) *m/z*: 226, 170, 141, 115, 57.

References

 Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. *Chem. Commun.* 2001, DOI:10.1039/b106357j 10.1039/b106357j(19), 2010.

- (2) Hekmatshoar, R.; Mousavizadeh, F.; Rahnamafar, R. Lewis acidic (choline chloride.3ZnCl2) ionic liquid: A green and recyclable catalyst for the one-pot synthesis of 4-((3-indolyl)(aryl)methyl)-N,N-dimethylanilines under solvent-free conditions. J. Chem. Sci. 2013, 125 (5), 1009.
- (3) Tran, P. H.; Nguyen, H. T.; Hansen, P. E.; Le, T. N. An efficient and green method for regio- and chemo-selective Friedel–Crafts acylations using a deep eutectic solvent ([CholineCl][ZnCl2]3). *RSC Adv.* **2016**, *6* (43), 37031.
- (4) Durán-Peña, M. J.; Botubol-Ares, J. M.; Hanson, J. R.; Hernández-Galán, R.; Collado, I. G. Efficient O-Acylation of Alcohols and Phenol Using Cp2TiCl as a Reaction Promoter. *European Journal of Organic Chemistry* 2016, 2016 (21), 3584.
- (5) Melais, N.; Aribi-Zouioueche, L.; Riant, O. The effect of the migrating group structure on enantioselectivity in lipase-catalyzed kinetic resolution of 1-phenylethanol. *Comptes Rendus Chimie* **2016**, *19* (8), 971.
- (6) Lu, N.; Chang, W.-H.; Wei, R.-J.; Fang, Y.-C.; Han, T.-W.; Wang, G.-Q.; Chang, J.-Y.; Wen, Y.-S.; Liu, L.-K. Pyridinium saccharinate salts as efficient recyclable acylation catalyst: a new bridge between heterogeneous and homogeneous catalysis. *Tetrahedron* **2016**, *72* (24), 3468.
- (7) Gnanaprakasam, B.; Ben-David, Y.; Milstein, D. Ruthenium Pincer-Catalyzed Acylation of Alcohols Using Esters with Liberation of Hydrogen under Neutral Conditions. *Advanced Synthesis & Catalysis* **2010**, *352* (18), 3169.
- (8) Siavashi, N. Y.; Akhlaghinia, B.; Zarghani, M. Sulfonated nanohydroxyapatite functionalized with 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as a reusable solid acid for direct esterification of carboxylic acids with alcohols. Research on Chemical Intermediates 2016, 42 (6), 5789.
- (9) Sato, I.; Suzuki, H.; Yamashita, Y.; Kobayashi, S. Catalytic asymmetric direct-type 1,4-addition reactions of simple esters. *Org. Chem. Front.* 2016, DOI:10.1039/c6qo00242k 10.1039/c6qo00242k.
- (10) Ren, Y.; Cai, C. Molecular Iodine in Ionic Liquid: A Green Catalytic System for Esterification and Transesterification. *Synthetic Communications* **2010**, *40* (11), 1670.
- (11) Miao, J.; Wan, H.; Guan, G. Synthesis of immobilized Brønsted acidic ionic liquid on silica gel as heterogeneous catalyst for esterification. *Catalysis Communications* 2011, 12 (5), 353.
- (12) Parida, K. M.; Mallick, S. Silicotungstic acid supported zirconia: An effective catalyst for esterification reaction. *Journal of Molecular Catalysis* A: Chemical **2007**, 275 (1–2), 77.
- (13) Bandeira, P. T.; Alnoch, R. C.; de Oliveira, A. R. M.; de Souza, E. M.; de O. Pedrosa, F.; Krieger, N.; Piovan, L. Enzymatic kinetic resolution of aliphatic sec-alcohols by LipG9, a metagenomic lipase. *Journal of Molecular Catalysis B: Enzymatic* 2016, *125*, 58.
- (14) Bamoharram, F. F.; Heravi, M. M.; Roshani, M.; Jahangir, M.; Gharib, A. Preyssler catalyst, [NaP5W30O110]14–: A green, efficient and reusable

catalyst for esterification of salicylic acid with aliphatic and benzylic alcohols. *Applied Catalysis A: General* **2006**, *302* (1), 42.

- (15) Reetz, M. T.; Goossen, L. J.; Meiswinkel, A.; Paetzold, J.; Jensen, J. F. Enantioselective Rh-Catalyzed Hydrogenation of Vinyl Carboxylates with Monodentate Phosphite Ligands. *Organic Letters* 2003, 5 (17), 3099.
- (16) Lohr, T. L.; Li, Z.; Assary, R. S.; Curtiss, L. A.; Marks, T. J. Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O–R' Bond Hydrogenolysis. Scope and Mechanism. ACS Catalysis 2015, 5 (6), 3675.
- (17) Chatterjee, T.; Saha, D.; Ranu, B. C. Solvent-free transesterification in a ball-mill over alumina surface. *Tetrahedron Letters* **2012**, *53* (32), 4142.
- (18) Singh, M.; Kumar, S.; Kumar, A.; Kumar, P.; Narasimhan, B. Synthesis, antimicrobial evaluation, and QSAR analysis of 2-isopropyl-5methylcyclohexanol derivatives. *Medicinal Chemistry Research* 2012, 21 (4), 511.
- (19) Zhao, L.; Fang, L.; Xu, Y.; Liu, S.; He, Z.; Zhao, Y. Transdermal delivery of penetrants with differing lipophilicities using O-acylmenthol derivatives as penetration enhancers. *European Journal of Pharmaceutics and Biopharmaceutics* **2008**, *69* (1), 199.
- (20) Kumar, B.; Kumar, H.; Parmar, A. A Facile Conversion of Halides. Alcohols and Olefins to Esters Using Iron(III) Perchlorate. *Synthetic Communications* **1992**, *22* (7), 1087.
- (21) Jereb, M.; Vražič, D.; Zupan, M. Dual behavior of alcohols in iodinecatalyzed esterification under solvent-free reaction conditions. *Tetrahedron Letters* **2009**, *50* (20), 2347.
- (22) Zhang, L.; Luo, Y.; Fan, R.; Wu, J. Metal- and solvent-free conditions for the acylation reaction catalyzed by carbon tetrabromide (CBr4). *Green Chemistry* **2007**, *9* (9), 1022.
- (23) Carroux, C. J.; Moeker, J.; Motte, J.; Lopez, M.; Bornaghi, L. F.; Katneni, K.; Ryan, E.; Morizzi, J.; Shackleford, D. M.; Charman, S. A.et al. Synthesis of acylated glycoconjugates as templates to investigate in vitro biopharmaceutical properties. *Bioorganic & Medicinal Chemistry Letters* 2013, 23 (2), 455.
- (24) Sasaki, I.; Taguchi, J.; Doi, H.; Ito, H.; Ishiyama, T. Iridium(I)-catalyzed C-H Borylation of α,β-Unsaturated Esters with Bis(pinacolato)diboron. *Chemistry An Asian Journal* 2016, *11* (9), 1400.
- (25) Kurzer, F.; Chapman, D. The Oxidation of Partially Acylated Myoinositols. *Zeitschrift fuer Naturforschung, B: Chemical Sciences* **1996,** *51* (1), 68.
- (26) Tomomichi, I.; Satoshi, A. Preparation and Properties of Polymers Anchoring Biphenyl-2-ol. *Bulletin of the Chemical Society of Japan* **1983**, 56 (7), 2177.



C:\OPUS\_7.0.122\MEAS DATA\DICH VU\dh KHTN\10072015\DES V.1

7/10/2015 4:45:01 PM



Seite 1 von 1





File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\1-PHENYLETHANOL-ACETIC-DES13-TP-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 12 Nov 2015 1:52 using AcqMethod ACYLATION-SHORT.M Sample Name: 1-PHENYLETHANOL-ACETIC-DES13-TP-30P-KT Misc Info :





# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 1-phenylethyl butyrate

File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\1-PHENYLETHANOL-BUTYRIC ANHY-DES13-TP-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 13 Nov 2015 16:52 using AcqMethod ACYLATION-SHORT.M Sample Name: 1-PHENYLETHANOL-BUTYRIC ANHY-DES13-TP-30P-KT



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 1-phenylethyl benzoate



<sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of isopropyl propionate



File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\NMR\ISOPROPANOL-PRO-DES13-TP-5P-SA-DELAY2MIN-NMR.D Operator : TRUONG HAI Instrument : GCMSD

Acquired : 14 Jan 2016 14:53 using AcqMethod ACYLATION-SHORT.M Sample Name: ISOPROPANOL-PRO-DES13-TP-5P-SA-DELAY2MIN-NMR Misc Info :





File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\2-BUTANOL-PRO-DES13-TP-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 13 Nov 2015 21:45 using AcqMethod ACYLATION-SHORT.M Sample Name: 2-BUTANOL-PRO-DES13-TP-30P-KT Misc Info :



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 2-pentyl propionate



File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\2-PENTANOL-PRO-DES13-Tp-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 3 Nov 2015 22:09 using AcqMethod ACYLATION-SHORT.M Sample Name: 2-PENTANOL-PRO-DES13-Tp-30P-KT Misc Info :



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 2-hexyl propionate



File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\2-HEXANOL-PRO-DES13-Tp-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 5 Nov 2015 19:31 using AcqMethod ACYLATION-SHORT.M Sample Name: 2-HEXANOL-PRO-DES13-Tp-30P-KT Misc Info :



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 2-heptyl propionate



File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\2-HEPTANOL-PRO-DES13-Tp-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 5 Nov 2015 20:53 using AcqMethod ACYLATION-SHORT.M Sample Name: 2-HEPTANOL-PRO-DES13-Tp-30P-KT Misc Info :



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of cyclohexyl propionate



File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\CYCLOHEXANOL-PRO-DES13-TP-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 13 Nov 2015 20:20 using AcqMethod ACYLATION-SHORT.M Sample Name: CYCLOHEXANOL-PRO-DES13-TP-30P-KT Misc Info :



<sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of **2-isopropyl-5-methylcyclohexyl propionate** 





File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\MENTHOL-PRO-DES13-Tp-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 3 Nov 2015 20:05 using AcqMethod ACYLATION-SHORT.M Sample Name: MENTHOL-PRO-DES13-Tp-30P-KT Misc Info :





File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCI2\GRADUATION\ES ... TER\KHUAY TU\ISOBORNEOL-PRO-DES13-TP-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 13 Nov 2015 22:18 using AcqMethod ACYLATION-SHORT.M Sample Name: ISOBORNEOL-PRO-DES13-TP-30P-KT Misc Info :





# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 1-phenylethyl propionate

File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCI2\GRADUATION\ES ... TER\KHUAY TU\1-PHENYLETHANOL-PRO-DES13-35%-Tp-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 3 Nov 2015 18:59 using AcqMethod ACYLATION-SHORT.M Sample Name: 1-PHENYLETHANOL-PRO-DES13-Tp-30P-KT Misc Info :



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of benzhydryl propionate



File :D:\phuong\NCS\2011-HAI\CHOLINE CLORIDE - ZnCl2\GRADUATION\ES ... TER\KHUAY TU\DIPHENYLMETHANOL-PRO-DES13-Tp-30P-KT.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 5 Nov 2015 18:22 using AcqMethod ACYLATION-SHORT.M Sample Name: DIPHENYLMETHANOL-PRO-DES13-Tp-30P-KT Misc Info :



## <sup>1</sup>H-NMR and <sup>13</sup>C-NMR of α-*D*-glucopyranose pentapropanonate

### 





# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of naphthalene-2-yl propionate

File :C:\GC-MS\2016\07.27.2016\2-NAPHTAOL-PRO-1-5-DES-KT-RT-50P.D Operator : TRUONG HAI Acquired : 27 Jul 2016 17:18 using AcqMethod ACYLATION-SHORT-DELAY-3MIN.M Instrument : GCMSD Sample Name: 2-NAPHTAOL-PRO-1-5-DES-KT-RT-50P Misc Info : Vial Number: 8



# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of 4-methoxyphenyl propionate



File :C:\GC-MS\2016\07.31.2016\4-METHOXYPHENOL-PRO-DES-RT-KT-50P.D Operator : TRUONG HAI Acquired : 31 Jul 2016 16:02 using AcqMethod ACYLATION-SHORT-DELAY-3MIN.M Instrument : GCMSD Sample Name: 4-METHOXYPHENOL-PRO-DES-RT-KT-50P Misc Info : Vial Number: 3



<sup>1</sup>H-NMR and <sup>13</sup>C-NMR of (1R,2r,3S,4R,5s,6S)-cyclohexane-1,2,3,4,5,6-hexayl hexapropionate





# <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS of [1,1'-biphenyl]-2-yl propionate

File :C:\GC-MS\2016\07.28.2016\1-HYDROXYBIPHENYL-PRO-1-5-DES-KT-RT -50P.D

... - 50F.D Operator : TRUONG HAI Instrument : GCMSD Acquired : 28 Jul 2016 13:27 using AcqMethod ACYLATION-SHORT-DELAY-3MIN.M Sample Name: 1-HYDROXYBIPHENYL-PRO-1-5-DES-KT-RT-50P

