Supporting Information

Breathing catalyst-supports: CO₂ adjustable and magnetic recyclable "smart" hybrid nanoparticles

Anchao Feng,^a Yun Wang,^a Liao Peng,^a Xiaosong Wang^b and Jinying Yuan^{*a,c}

^a Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education

Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China

E-mail: yuanjy@mail.tsinghua.edu.cn

^b Department of Chemistry, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada

^c State Key Laboratory of Polymer Materials Engineering (Sichuan University)

Fig. S1 a) FT-IR spectra of $Fe_3O_4@OA$, $Fe_3O_4@SiO_2$, $Fe_3O_4@SiO_2$ -MPS and $Fe_3O_4@SiO_2@PDEAEMA$. b) TGA curves of $Fe_3O_4@SiO_2$ -MPS and $Fe_3O_4@SiO_2@PDEAEMA$.

Fig. S2 SEM image of Fe₃O₄@SiO₂-PDEAEMA hybrid microspheres.

Fig. S3 Zeta potential of a) $Fe_3O_4@SiO_2@PDEAEMA$ nanoparticles after treatment of CO_2 ; b) $Fe_3O_4@SiO_2@PDEAEMA-Au$ nanocomposites after treatment of CO_2 ; c) $Fe_3O_4@SiO_2@PDEAEMA-Au$ nanocomposites after treatment of N_2 .

Fig. S4 The average diameter of Fe_3O_4 ($@SiO_2$ -PDEAEMA-Au nanocomposites by DLS after CO₂ and N₂ purging for 15 min.

Determination of mass ratio of polymer through TGA data

Based on the TGA results, we can assume that there was 80.98 g residuum in 100 g of Fe₃O₄@SiO₂. Same component of residuum will be kept for the sample of Fe₃O₄@SiO₂@PDEAEMA, as the polymer component should be removed totally at 800 °C. The mass of PDEAEMA can be calculated as 80.98 g/(1-40.91 %)-100 g, resulted in 37.05 g. Therefore, the mass ratio of polymer can be decided as 37.05 g/ (100 g+37.05g) = 27.04 wt %.