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S1. Details of Characterization

                  

Figure S1. The applied crosslinkers for the silylation based crosslinking reaction. Left: The three-
functional crosslinker (Tris(dimethylsiloxy)phenylsilane). Right: The four-functional crosslinker 
(Tetrakis(dimethylsilyl) orthosilicate).

Figure S2. Mechanical properties. Reversing large amplitude oscillatory elongation on the strongest 
(Elastosil) and softest (V31) networks. The strain rate is ν = 0.02 s−1.

2



Table S1: Properties of the applied polymers. The molecular weight Mn was determined by Size 
Exclusion Chromatography. The polydispersity index, PDI = MW/Mn, was determined by 1H NMR 
measurements. The methods are described in (13).

Polymer Mn [g/mol] PDI

V31 29,000 1.3

V35 49,500 1.5

V41 62,400 1.6

Table S2: Average bond lengths (r) and associated widths () in the distance distributions as well as 
derived average bond angles for sample V31 in the loaded and un-loaded state. The parameters result 
from a fit of the isotropic experimental data in Fig 2a to the scattering arising from a model of the 
structural unit. 1: Fit of σ is restricted to values larger than 0.08 Å, |Δσ| to values greater than 10% of σ.

r0, σ  (λ=1)
Δr,Δσ

(λ=2 - λ=1)

Relative 
change 

Δr/r0, Δσ/σ
rSiO / Å 1.642 -6.0 10-4 -3.7 10-4

σSiO/ Å 0.111 4.5 10-3 4.0 10-2

rSiC / Å 1.869 -2.8 10-4 -1.5 10-4

σSiC/ Å 0.143 4.4 10-3 3.1 10-2

rSiSi / Å 3.160 -4.210-4 -1.3 10-4

σSiSi/ Å 0.139 3.5 10-3 2.5 10-2

rOO / Å 2.736 1.2 10-3 4.6 10-4

σOO/ Å 10.080 -5.4 10-3 -6.8 10-2

rCC / Å 3.055 -10.4 10-3 -3.4 10-3

σCC/ Å 10.080 7.8 10-3 9.7 10-2

rOC / Å 2.858 1.010-4 3.6 10-5

σOC/ Å 0.200 1.210-2 6.0 10-2 

<OSiO /deg 112.8 7.9 10-2 7.0  10-4

<CSiC /deg 109.6 -5.5 10-1 -5.0 10-3

<SiOSi /deg 148.4 -5.3 10-2 -3.6 10-4
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Table S3: The results for the preferred orientation parameter is obtained by scaling the model described 

in the main text to the amplitude of g2 in Fig S4b, and reflects the increased likelihood of a SiO bond to 

point in the tensile direction compared to an isotropic distribution at λ=2. 1The values for V41 and 

Elastosil are extrapolated to λ=2.

Polymer V31 V35 V41 Elastosil

Preferred orientation parameter / % 1.9 0.2 0.61 1.41

S2. Details of Entropic and Enthalpic Contributions

The entropy of stretching of polymer chains is generally written in the simplified form under the 
assumption that the polymer chains behave according to Gaussian random walks1:
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Where k is the Boltzmann’s constant, R and Ro are the perturbed and unperturbed end-to-end distances 
of the polymer, respectively, and N is the number of Kuhn steps of length b. 

If the chains are confined by entanglements moving affinely with the deformation, the change in entropy 
upon stretching of a polymer chain with  entangled chains can be expressed as:𝑁/𝑁𝑒
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Where  is the number of Kuhn steps in an entanglement and  is the perturbed end-to-end length of 𝑁𝑒 𝑅𝑛

the chain segment with the characteristic entanglement length.

If we assume simplistically that we allow one entanglement to slide upon the deformation, the two 
surrounding polymer segments, each of length , are replaced with two polymer segments of 𝑁𝑒𝑏

approximate lengths 0 and . The entropy of stretching of such a configuration can be written:2𝑁𝑒𝑏
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Since entropy is a state function, the gained entropy from entanglement sliding in the stretched state can 
be calculated as:
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In other words, when the entanglement is sliding, the decrease in entropy upon stretch is minimized and 
thus entropy is maximized and this can be facilitated by stretching the chains.

The magnitude of enthalpy is evaluated by the expression from Khazanovich2:
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Where  is the total stretching force,  is the enthalpic contribution to the stretching force,  is the 𝐹 𝐹𝑒 𝜀
reduced stiffness,  is dimensionless force, and  is the degree of chain stretching given by:𝑓 𝑔
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Where Ks is the stiffness coefficient of the Kuhn segment and hf is the projection of the vector 
connecting the ends of the chains onto the stretching axis.

The solution to the above equation in terms of the degree of chain stretching can be written under the 
assumption that ε >>1:
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The assumption is not strictly correct as the Si-O bonds are rather flexible but the assumption does not 
change the order of magnitude of the solution.

If we assume that the allowed stretching force is of the order of several  according to the results for 𝑘𝑇
the entropy gain from sliding, the  reduces to 1 and the expression can be simplified to:coth (𝑓)
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Further assuming that the reduced stretching force is greater than the reduced stiffness, i.e. f >> ,  𝜖
following simplified equation is obtained:
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Hereby it is shown by a very simplistic approach that the degree of chain stretching grows linearly with 
the entropy gain from allowing sliding of entanglements.
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