Supplemental Materials for

Influence of siloxane on the transport of ZnO nanoparticles

from different release pathways in saturated sand

RSC Advances

Submitted: September 2016

Revised: October 2016

Sung Hee Joo^{a*}, Marc Knecht^b, Chunming Su^c, Seok-Ju Seo^a, Randy Lawrence^b

^a Civil, Architectural, and Environmental Engineering Department, University of Miami,

1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146, USA

^b Chemistry Department, University of Miami, 1301 Memorial Dr. Coral Gables, FL, 33146,USA ^cGround Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, Environmental Protection Agency 919 Kerr Research Dr. Ada, OK 74820, USA

*Corresponding author: telephone +1-305-284-3489; fax +1-305-284-3492; e-mail: s.joo1@miami.edu

Summary of Contents

Number of Pages	S1-S3
Number of Figures	S2-S3
e	

Fig. S1. The isoelectric point (IEP) of 50 mg/L nano-ZnO suspension in the absence (a) and presence (b) of a buffer (1 mM Na₂CO₃) of a working solution and hydrodynamic particles size of nano-ZnO as a function of pH.

Fig. S2. Zeta potential (mV) and hydrodynamic particle size (nm) of nano-ZnO suspension in the presence and absence of TMDS.