Electronic Supplementary Information

Hierarchically nanostructured MnO₂ electrodes

for pseudocapacitor application

Ilhwan Ryu^a, Green Kim^a, Hajin Yoon^a, Sang Jung Ahn^b, Sanggyu Yim^{,a}

^aDepartment of Chemistry, Kookmin University, Seoul 136-702, South Korea.

^bKorea Research Institute of Standard and Science, Daejeon 305-340, South Korea

Figure S1. (a) Powder X-ray diffraction pattern and (b) X-ray photoelectron spectum of the electrodeposited MnO_2 thin film. The diffraction peaks indexed in (a) are consistent with standard data for MnO_2 from JCPDS no. 44-014.

Figure S2. Plots of deposit weights of MnO_2 for the hierarchically nanostructrued electrodes as a function of the number of electrodeposition cycles.

Figure S3. (a) Bode |Z| and (b) Bode angle plots of the hierarchical and simple MnO₂ nanostructure electrodes.

Figure S4. AFM image of the hierarchical MnO₂ nanostructure. The number of electrodeposition cycle is 15.

Figure S5. A photograph of a red LED lightened by three asymmetric supercapacitor units connected in series. Each unit consists of activated carbon electrode based half-cell and hierarchical MnO_2 nanostructure electrode based half-cell.