Electronic Supporting Information

Zn(II) and Cd(II) coordination networks based on N-donor ligand: synthesis, crystal structures, and sensing of nitroaromatic explosives

Jian-Long Du,*^a Chao-Ping Li,^a Ju-Ping Gao,^a Xiao-Ying Zhang,^a Xu Jing,^a Ya-Juan Mu,*^b and Li-Jun Li *^a

Fig. S1. PXRD patterns of the compounds (a for 1, b for 2, c for 3, and d for 4).

Fig. S2. TG curves of 1–4 (a for 1, b for 2, c for 3, and d for 4).

Fig. S3. Solid state excitation spectra of 1–4 and HL at ambient temperature (a for 1, b for 2, c for 3, d for 4, and e for HL).

Fig. S4. Solid state emission spectra of 1–4 and HL at ambient temperature.

Fig. S5. Emission spectra of 1–4 in different solvents (a for 1, b for 2, c for 3, and d for 4).

Fig. S6. Excitation and emission spectra of 1–4 in DMF (a for 1, b for 2, c for 3, d for 4, and e for HL).

Fig. S7. Emission spectra of 1–4 at different aromatic compounds in DMF (a for 1, b for 2, c for 3, and d for 4).

Fig. S8. Emission intensities of **1**–**4** dispersed in DMF and in the presence of 400 ppm different analytes (a for **1**, b for **2**, c for **3**, and d for **4**).

Fig. S9. Reproducibility of the quenching ablity of **1**–**4** dispersed in DMF and in the presence of 400 ppm **NB**. The percentages on the top represent quenching efficiency of every cycle (a for **1**, b for **2**, c for **3**, and d for **4**).

Fig. S10. PXRD patterns of the recycled compounds (a for 1, b for 2, c for 3, and d for 4).

Fig. S11. HOMO and LUMO energy levels and shapes of the molecular orbitals considered for analytes and HL ligand. (investigated by the B3LYP/6-31G* method).

Fig. S12. Stern-Volmer plot of 1

Fig. S13. Stern-Volmer plot of 2

Fig. S15. Stern-Volmer plot of 4

Fig. S16. Spectral overlap between the absorption spectra of analytes and the emission spectra of compounds 1–4 in DMF.

	1			
Zn(1)-N(1)	2.000(2)	Zn(1)-N(4)#1	2.002(2)	
$\operatorname{Zn}(1)$ - $\operatorname{Cl}(1)$	2.2122(9)	Zn(1)-N(6)#2	2.030(2)	
N(1)-Zn(1)-N(4)#1	112.56(10)	N(1)-Zn(1)-N(6)#2	111.64(10)	
N(4)#1-Zn(1)-N(6)#2	102.40(10)	N(1)-Zn(1)-Cl(1)	104.76(7)	
N(4)#1-Zn(1)-Cl(1)	117.21(7)	N(6)#2-Zn(1)-Cl(1)	108.36(8)	
	2			
Cd(1)-N(7)#1	2.337(2)	Cd(1)-N(1)	2.3612(19)	
Cd(1)-N(3)#2	2.480(2)	Cd(1)-Cl(3)#3	2.5632(8)	
Cd(1)-Cl(1)	2.5884(8)	Cd(1)-Cl(2)	2.6270(9)	
Cd(2)-N(4)#4	2.359(2)	Cd(2)-N(2)#5	2.396(2)	
Cd(2)-Cl(1)	2.5303(9)	Cd(2)-Cl(3)	2.5792(9)	
Cd(2)-Cl(2)	2.7953(8)	Cl(2)-Cd(2)#6	2.6468(9)	
Cl(3)-Cd(1)#7	2.5631(8)			
N(7)#1-Cd(1)-N(1)	101.63(8)	N(7)#1-Cd(1)-N(3)#2	172.43(7)	
N(1)-Cd(1)-N(3)#2	81.61(7)	N(7)#1-Cd(1)-Cl(3)#3	85.67(6)	
N(1)-Cd(1)-Cl(3)#3	96.65(5)	N(3)#2-Cd(1)-Cl(3)#3	87.17(5)	
N(7)#1-Cd(1)-Cl(1)	86.58(6)	N(7)#1-Cd(1)-Cl(2)	100.35(6)	
N(1)-Cd(1)-Cl(2)	83.99(5)	N(4)#4-Cd(2)-N(2)#5	80.33(7)	
Cl(1)-Cd(2)-Cl(2)#5	86.52(3)	Cl(3)-Cd(2)-Cl(2)	81.15(2)	
	3			
Zn(1)-N(1)	2.1161(15)	Zn(1)-O(1)	2.1709(13)	
Zn(1)-N(4)#2	2.2310(15)			
N(1)-Zn(1)-O(1)#1	95.13(6)	N(1)-Zn(1)-O(1)	84.87(6)	
N(1)-Zn(1)-N(4)#2	90.58(6)	N(1)-Zn(1)-N(4)#3	89.42(6)	
O(1)-Zn(1)-N(4)#2	94.29(5)	O(1)-Zn(1)-N(4)#3	85.71(5)	
	4			
Cd(1)-N(1)	2.3023(13)	Cd(1)-O(1W)	2.3456(12)	
Cd(1)-N(4)#2	2.3503(13)			
N(1)#1-Cd(1)-O(1W)	83.62(5)	N(1)-Cd(1)-O(1W)	96.38(5)	
N(1)#1-Cd(1)-N(4)#2	90.29(5)	N(1)-Cd(1)-N(4)#2	89.71(5)	
O(1W)-Cd(1)-N(4)#2	84.75(5)	O(1W)#1-Cd(1)-N(4)#2	95.25(5)	

Table S1. Selected bond length (Å) and angles (°) for complexes 1–4.

Symmetry code for 1: #1 x+1, y, z, #2 x+1, -y+3/2, z-1/2, #3 x-1, y, z, #4 x-1, -y+3/2, z+1/2; **2**: #1 -x+1, y+1/2, z+1, #2 -x+1, y+1/2, -z+2, #3 x+1, y, z, #4 x-1, y+1, z, #5 -x, y+1/2, -z+2, #6 -x, y-1/2, -z+2, #7 x-1, y, z, #8 -x+1, y-1/2, -z+2, #9 x+1, y-1, z, #10 -x+1, y-1/2, -z+1; **3** (**4**): #1 -x+1, -y+3, -z+3; #2 x+1, y+1, z+1; #3 -x, -y+2, -z+2; #4 x-1, y-1,z-1.

Quenching Percentage for 1 (%)								
Aanlystes Concentrations	NB	TNP	4-NC	4-NT	2,4-DNC	2,4-DNT		
25 ppm	30	48	42	52	32	29		
50 ppm	47	67	64	75	52	49		
75 ppm	60	78	77	86	66	62		
100 ppm	70	84	85	92	75	73		
125 ppm	79	88	90	95	82	79		
150 ppm	83	92	93	97	87	85		
Quenching Percentage for 2 (%)								
25 ppm	19	53	32	46	24	22		
50 ppm	35	75	53	69	44	40		
75 ppm	48	86	66	81	58	53		
100 ppm	58	93	76	89	69	63		
125 ppm	66	97	82	93	77	76		
150 ppm	72	99	87	95	83	85		
Quenching Percentage for 3 (%)								
25 ppm	29	54	28	40	25	21		
50 ppm	43	75	48	65	46	40		
75 ppm	54	85	62	78	61	53		
100 ppm	62	90	72	86	72	63		
125 ppm	69	93	78	91	84	75		
150 ppm	74	96	84	94	90	82		
Quenching Percentage for 4 (%)								
25 ppm	18	57	26	40	25	24		
50 ppm	31	77	45	60	44	41		
75 ppm	43	87	59	75	59	54		
100 ppm	52	93	68	84	68	64		
125 ppm	59	96	76	89	77	72		
150 ppm	66	98	81	92	83	78		

Table S2. Percentage of fluorescence quenching obtained for different analytes at room temperature.