Electric Supplementary Information

Bis(β -diketonato)- and Allyl-(β -diketonato)-Palladium(II) Complexes:

Synthesis, Characterization and MOCVD Application

K. Assim,^a M. Melzer,^b M. Korb,^a T. Rüffer,^a A. Jakob,^a J. Noll,^a C. Georgi,^{b,c} S. E. Schulz,^{b,c} and H. Lang^{a*}

^a Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany. E-mail: heinrich.lang@ chemie.tu-chemnitz.de; Fax.: +49-371-531-21219.

^b Technische Universität Chemnitz, Center for Microtechnologies, 09107, Chemnitz, Germany

^c Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126 Chemnitz, Germany.

Content

¹ H NMR spectrum of 8	.2
ESI MS: Isotope pattern of [M + Na] of 8	3
XRPD pattern of the TG residues of 7, 8 and 11 – 14	4
SEM images of the deposited layers obtained from 11 – 14	.10
EDX spectra of the deposited films obtained from 11 – 14	.13
XPS spectra of the deposits obtained from 11 – 14	.15
XPS fitting parameters	.17
XRPD pattern of the deposited layers obtained from 13 and 14	18

SI 1. ¹H NMR spectrum of 8 at 25 °C in chloroform.

ESI MS: Isotope pattern of $[M + Na]^+$ for **8**.

SI 2. Isotope pattern of the ion peak [M + Na]⁺ from the ESI MS spectrum of 8

SI 3. XRPD pattern of the residue obtained by the TG of **7** under nitrogen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 4. XRPD pattern of the residue obtained by the TG of **7** under oxygen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 5. XRPD pattern of the residue obtained by the TG of **8** under nitrogen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 6. XRPD pattern of the residue obtained by the TG of **8** under oxygen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 7. XRPD pattern of the residue obtained by the TG of **11** under nitrogen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 8. XRPD pattern of the residue obtained by the TG of **11** under oxygen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 9. XRPD pattern of the residue obtained by the TG of **12** under nitrogen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 10. XRPD pattern of the residue obtained by the TG of **12** under oxygen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 11. XRPD pattern of the residue obtained by the TG of **13** under nitrogen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 12. XRPD pattern of the residue obtained by the TG of **13** under oxygen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 13. XRPD pattern of the residue obtained by the TG of **14** under nitrogen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SI 14. XRPD pattern of the residue obtained by the TG of **14** under oxygen (gas flow, 20 sccm; heating rate 10 K min⁻¹).

SEM Images

SI 15. Left: Layer obtained from the $CVD(O_2)$ of **11**. Right: Cross-section image. Substrate temperature 380 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), oxygen flow rate 40 sccm, working pressure 0.8 mbar.

SI 16. Left: Layer obtained from the $CVD(N_2/H_2)$ of **11**. Right: Cross-section image. Substrate temperature 350 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), forming gas 40 sccm, working pressure 0.8 mbar.

SI 17. Left: Layer obtained from the $CVD(O_2)$ of **12**. Right: Cross-section image. Substrate temperature 380 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), oxygen flow rate 40 sccm, working pressure 0.8 mbar.

SI 18. Left: Layer obtained from the $CVD(N_2/H_2)$ of **12**. Right: Cross-section image. Substrate temperature 350 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), forming gas 40 sccm, working pressure 0.8 mbar.

SI 19. Left: Layer obtained from the $CVD(O_2)$ of **13**. Right: Cross-section image. Substrate temperature 380 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), oxygen flow rate 40 sccm, working pressure 0.8 mbar.

SI 20. Left: Layer obtained from the $CVD(N_2/H_2)$ of **13**. Right: Cross-section image. Substrate temperature 350 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), forming gas 40 sccm, working pressure 0.8 mbar.

SI 21. Left: Layer obtained from the $CVD(O_2)$ of **14**. Right: Cross-section image. Substrate temperature 380 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), oxygen flow rate 40 sccm, working pressure 0.8 mbar.

SI 22. Left: Layer obtained from the $CVD(N_2/H_2)$ of **14**. Right: Cross-section image. Substrate temperature 350 °C, deposition time 15 min, nitrogen flow rate 40 sccm (carrier gas), forming gas 40 sccm, working pressure 0.8 mbar.

EDX Spectra

SI 23. EDX spectra of the film obtained from **11** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 24. EDX spectra of the film obtained from **12** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 25. EDX spectra of the film obtained from **13** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 26. EDX spectra of the film obtained from **14** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 27. *Ex-situ* XPS spectra of the film obtained from **11** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 28. *Ex-situ* XPS spectra of the film obtained from **12** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 29. *Ex-situ* XPS spectra of the film obtained from **13** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

SI 30. *Ex-situ* XPS spectra of the film obtained from **14** by $CVD(O_2)$ (dotted, oxygen flow rate 40 sccm, substrate temperature 380 °C) and $CVD(N_2/H_2)$ (solid, forming gas flow rate 40 sccm, substrate temperature 350 °C) for comparison.

XPS Fitting Parameters

	PVD			CVD		
	А	В		С	D	Е
Peak	Pd 3p _{3/2}	Pd 3p _{1/2}		Pd 3p _{3/2} (plasmon loss)	Pd p3 _{1/2} (plasmon loss)	O 1s
Area restrictions	2 x B	-		-	-	-
FWHM restictions [eV]	≤ 5.0 eV	≤ 5.0 eV		≤ 5.0 eV	≤ 5.0 eV	≤ 2.5 eV
Binding energy [eV]	531.5 - 534.0	A + 28.8		A + 5.3	A + 33.1	559.0 - 531.0
Peak shape	GL(70)	GL(90)		GL(30)T(2)	GL(30)T(2)	GL(30)

SI 31. Fitting parameters of the Pd $3p_{3/2}$ and Pd $3p_{1/2}$ peaks obtained from PVD and CVD processes.

SI 32. XRPD pattern obtained from the layer formed by $11 \text{ CVD}(O_2)$.

SI 33. XRPD pattern obtained from the layer formed by $12 \text{ CVD}(O_2)$.

SI 34. XRPD pattern obtained from the layer formed by 14 $CVD(O_2)$.