In situ forming silk-gelatin hybrid hydrogels for affinity-based growth factor sequestration and release

John C Bragg,¹ HaeYong Kweon,² You-Young Jo,² Kwang Gill Lee,² and Chien-Chi Lin^{1,*}

¹Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA

²Sericultural and Apicultural Materials Division, Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Republic of Korea

(Supplementary information)

*To whom correspondence should be sent:

Chien-Chi Lin, PhD. Associate Professor Department of Biomedical Engineering Purdue School of Engineering & Technology Indiana University-Purdue University Indianapolis Indianapolis, IN 46202 Phone: (317) 274-0760 Email: lincc@iupui.edu

Figure S1. (A) Frequency dependence of storage (G') and loss moduli (G") for silk fibroin-gelatin hydrogels (A) and the effect of genipin crosslinking on gel frequency response (B).

Figure S2. *In situ* rheometry of gelatin (A) and (B) gel points of the three physical hydrogels. Gel point data represent Mean \pm SEM; *p<0.05, ***p<0.0001.

Figure S3. Effect of temperature on shear modulus (G') of silk fibroin-gelatin physical gels. Data represent Mean \pm SEM of three independent experiments for each condition; *p<0.05; ***p<0.0001. Statistics shown compare between temperatures within each group.

Figure S4. (A) Chemical structure of dimethyl methylene blue (DMMB) (B) Schematic of qualitative DMMB assay procedure (C) DMMB assay images to verify heparin immobilization within hydrogels. All gels contained 3wt% SSF and/or 3wt% G/GH. SSF-GH-GN gels included an additional 0.1 wt% genipin.