Supporting information

Expeditious and eco-friendly hydrothermal polymerization of PEDOT nanoparticles for binder free high performance supercapacitor electrodes

Murugesan Rajesh^a, C. Justin Raj^{*a}, Byung Chul Kim^{a,b}, Ramu Manikandan^a, Sung-Jin Kim^c, Sang Yeup Park^c, Kwangsoo Lee^d, Kook Hyun Yu^{*a}

^a Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul-100715, South Korea.

^bARC Centre of Excellence for Electromaterials Science, IPRI, AIIM Facility, Innovation

Campus, University of Wollongong, NSW 2522, Australia.

^c Department of Ceramic Engineering, Gangneung-Wonju National University, Gangneung-210-702, Republic of Korea.

^d Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul-02792, Republic of Korea.

* Corresponding author, E-mail: yukook@dongguk.edu (K.H. Yu); cjustinraj@gmail.com (C.J.R) Tel.: +82 2 2260 3709, Fax:+82 2 2208 8204

Fig. S1 Photographic image of PEDOT coated graphite electrodes.

Fig. S2 Overlaid XRD spectrum of different MR of FeCl₃ polymerized PEDOT nanoparticles.

Fig. S3 EDX spectra of PEDOT nanoparticles obtained from (a) 1.25 MR of FeCl₃; (b) 2.5 MR of FeCl₃; (c) 3.75 MR of FeCl₃ and (d) 5 MR of FeCl₃.

Table S1. Atomic percentage of Fe and Cl content for various MR of FeCl₃ polymerized PEDOT nanoparticles.

Molar ratio of FeCl ₃	Atomic % of Cl content	Atomic % of Fe content
1.25	0.002%	Nil
2.5	0.36%	0.04%
3.75	0.78%	0.18%
5.0	0.99%	0.28%

Fig S4. Nitrogen adsorption isotherm and specific surface area calculation of PEDOT nanoparticles obtained from various MR of FeCl₃.

Fig. S5 Conductivity of the PEDOT nanoparticles obtained from various molar ratio of FeCl₃.

Fig. S6 Cyclic voltammograms of PEDOT electrodes from 5 to 300 mVs⁻¹ scan rates (a) 1.25 MR of FeCl₃ (b) 3.75 MR of FeCl₃ and (c) 5 MR of FeCl₃.

Fig.S7 (a) Peak current versus squre root of the scan rate plot of PEDOT electrodes obtained from (a) 1.25 MR of FeCl₃; (b) 2.5 MR of FeCl₃; (c) 3.75 MR of FeCl₃ and (d) 5 MR of FeCl₃.

Fig.S8 Galvanostatic charge/discharge curves of PEDOT electrodes at different current densities a) 1.25 MR of FeCl₃; (b) 3.75 MR of FeCl₃ and (d) 5 MR of FeCl₃.