Electronic Supplementary Data

Near-Infrared cyanine-based sensor for Fe³⁺ with high sensitivity: its intracellular imaging application in colorectal cancer cells

Mingming Zhu,^a[†] Chuanxing Shi,^b[†] Xitao Xu,^a Zhiqian Guo^{*bc} and Weihong Zhu^b

^a Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology,
Ministry of Health; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai
Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China

^b Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. E-mail: guozq@ecust.edu.cn

^c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

¹ These authors contributed equally.

Contents

- 1. Selectivity of CAM
- 2. Benesi-hildebrand plot
- 3. ESI-Mass spectrum of CAM with Fe^{3+}
- 4. Detection limit of CAM
- 5. Selectivity of CAT
- 6. Absorbance and emission spectra of CAM with addition of EDTA
- 7. Characterization data of all compounds
- 8. References

1. Selectivity of CAM

(A)

Figure S1. (Top) **(A)** Color change of CAM in the presence of different metal cations in a mixed solution. From left to right: Na⁺, Fe²⁺, Hg²⁺, K⁺, Ca²⁺, Cr³⁺, Zn²⁺, blank, Fe³⁺, Cu²⁺, Ni²⁺, Mg²⁺, Co²⁺, Pb²⁺, Mn²⁺, Cd²⁺, Sn²⁺, Ag⁺ (each 10 equiv except 5 equiv for Fe³⁺); (Bottom) **(B)** Absorbance spectra change of CAM (10 μ M) upon addition of mixed cations (each 1 equiv) and subsequent addition of 5 equiv of Fe³⁺. Note: Mix= Na⁺ + Fe²⁺ + Hg²⁺ + K⁺ + Ca²⁺ + Cr³⁺ + Zn²⁺ + Cu²⁺ + Ni²⁺ + Mg²⁺ + Co²⁺ + Pb²⁺ + Mn²⁺ + Cd²⁺ + Sn²⁺ + Ag⁺.

2. Benesi-hildebrand plot

Figure S2. Benesi-Hildebrand plot of CAM (10 μ M) with Fe³⁺.

3. ESI-Mass spectrum of CAM with Fe3+

Figure S3. ESI-Mass spectrum of CAM with Fe³⁺.

4. Detection limit of CAM

Figure S4. (A) Absorbance changes during the titration of CAM (5 μ M) with Fe³⁺ (0-35 μ M) in methanol. Inset: The absorbance intensity of CAM at 650 nm versus Fe³⁺ concentration. (B) A plot of $(A-A_{min})/(A_{max}-A_{min})$ at 650 nm versus lg [Fe³⁺], the calculated detection limit of sensor CAM is 8.2 μ M³.

5. Selectivity of CAT

Figure S5. Absorbance and emission spectra change of CAT (10 μ M) upon addition of different metal cations (each 10 equiv).

6. Absorbance and emission spectra of CAM with addition of EDTA

Figure S6. Absorbance and emission spectra of CAM (10 μ M) upon addition of Fe³⁺ ions (5 equiv) and subsequent addition of EDTA (5 equiv).

Figure S7. pH-dependent fluorescence intensity at 804 nm of CAM (10 µM, and excited at 671 nm).

7. Characterization data of all compounds

 $^1\mathrm{H}$ NMR spectra of compound 2 in $\mathrm{D_2O}$

Overall and part of ¹H NMR spectra of compound CAM in $CDCl_3$

Overall and part of ¹H NMR spectra of compound CAT in CDCl₃

¹³C NMR spectra of compound CAT in CDCl₃

References

- 1. Narayanan, N.; Patonay, G. J. Org. Chem. 1995, 60, 2391-2395.
- 2. EI-Ashgar, N. M.; Abdel-latif, M. S. Anal. Lett. 2008, 41, 3074-3087.
- 3. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414-1418.