## **Electronic Supplementary Information**

## Palladium(0) nanoparticles supported on polydopamine coated $Fe_3O_4$ as magnetically isolable, highly active and reusable catalyst for hydrolytic dehydrogenation of ammonia borane

Joydev Manna, Serdar Akbayrak, Saim Özkar<sup>†</sup>

Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey.

† Corresponding Author: sozkar@metu.edu.tr

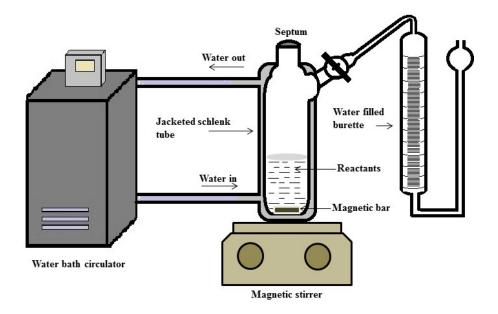



Figure S1: Schematic diagram of the reaction setup used for AB hydrolysis

## **Optimization of dopamine chloride salt concentration:**

Before starting our study with the catalysts, we have optimized the initial polydopamine salt concentration to prepare the PDA coated  $Fe_3O_4$  nanoparticles. In that process, we have changed the

polydopamine salt concentration from 0.5 to 8 mg/mL and observed the amount of polymer coated on the sample by measuring mass of the samples. Details of the synthesis condition is given in Table S1. As it can be seen from the Fig. S2, amount of polymer coating increases with increasing the dopamine chloride concentration and at higher concentration the mass change becomes negligible. Since the mass increase in  $Fe_3O_4$  powder shows no large variation at higher salt concentration, it can be concluded that the thickness of dopamine layer is also not varied significantly at dopamine concentrations higher than 4 mg/mL largely for these sample.

**Table S1:** Synthesis condition of polydopamine coated  $Fe_3O_4$  (\* denotes the ratio of mass of dopamine salt/volume of buffer solution).

| Volume of<br>buffer solution<br>(mL) | Conc. of<br>dopamine<br>chloride<br>(mg/mL)* | mass of<br>Fe <sub>3</sub> O <sub>4</sub><br>(mg) | Mass increase<br>in Fe <sub>3</sub> O <sub>4</sub><br>powder<br>(mg) | Thickness<br>measured by<br>TEM<br>(nm) |
|--------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| 50                                   | 0.5                                          | 280                                               | 8.3                                                                  | -                                       |
| 50                                   | 1                                            | 280                                               | 30.8                                                                 | -                                       |
| 50                                   | 2                                            | 280                                               | 34.6                                                                 | -                                       |
| 50                                   | 4                                            | 280                                               | 40.1                                                                 | 3.0                                     |
| 50                                   | 8                                            | 280                                               | 41.4                                                                 | -                                       |

After PDA coating on Fe<sub>3</sub>O<sub>4</sub> nanoparticles, palladium nanoparticles (2.0% wt) were supported on the surface of PDA-Fe<sub>3</sub>O<sub>4</sub> (prepared by using 2, 4 and 8 mg/mL dopamine chloride) and the catalytic activity of the catalysts was tested in hydrogen generation from the hydrolysis of ammonia borane. As shown in Fig S3, the Pd/PDA- Fe<sub>3</sub>O<sub>4</sub> catalyst prepared by 4 mg/mL of dopamine hydrochloride salt shows higher catalytic activity than the other two samples. Therefore, 4 mg/mL of dopamine hydrochloride salt, which provides an average thickness of  $3.0 \pm 0.5$  nm dopamine layer, was used for the coating of Fe<sub>3</sub>O<sub>4</sub> nanoparticles.

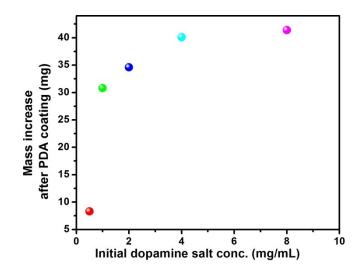
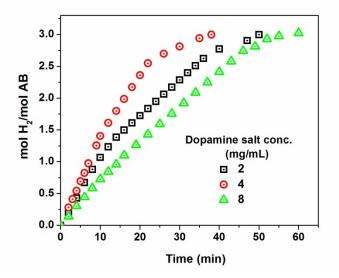




Fig S2. Mass increase after polymer coating on the surface of  $Fe_3O_4$  nanoparticles at various initial dopamine salt concentration used for PDA coating



**Fig S3:** Plots of equivalent H<sub>2</sub> per mole of AB versus time during the catalytic hydrolysis of AB using the Pd<sup>0</sup>/PDA-Fe<sub>3</sub>O<sub>4</sub> catalyst (2.0% wt. Pd) for hydrogen generation from the hydrolysis of ammonia borane at 25.0  $\pm$  0.1 °C (PDA-Fe<sub>3</sub>O<sub>4</sub> was prepared by changing the initial dopamine salt concentration for each run).

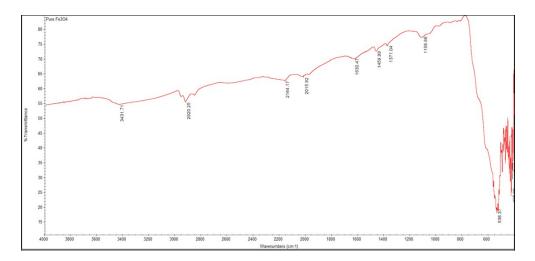
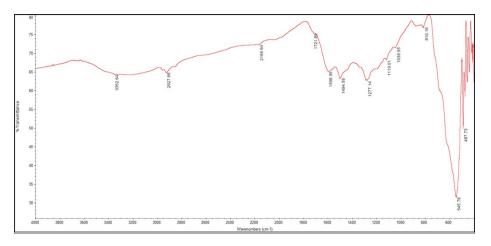




Fig S4: FTIR spectra of Fe<sub>3</sub>O<sub>4</sub>



**Fig S5:** FTIR spectra of PDA-Fe<sub>3</sub>O<sub>4</sub>

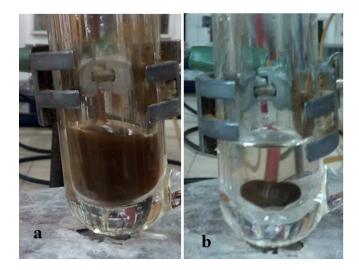



Fig S6: Photograph of the Pd<sup>0</sup>/PDA-Fe<sub>3</sub>O<sub>4</sub> catalyst inside the reactor (a) during stirring (b) without stirring