Supporting Information

One-step solvothermal synthesis of Al-promoted Fe₃O₄ magnetic catalysts for

selective oxidation of benzyl alcohol to benzaldehyde with H₂O₂ in water

Leisha Xiong, Rong Chen and Fengxi Chen*

School of Chemistry and Environmental Engineering, Wuhan Institute of

Technology, Wuhan, 430073, PR China

(E-mail address: fxchen@wit.edu.cn)

Table S1 Synthesis of Fe₃O₄-AIP with varying Al contents at 198 °C for 24h

Al content	Al source ^a	FeCl ₃ ·6H ₂ O	NaOAc	MEG
(wt%)	(mL)	(g)	(g)	(mL)
0.08	0.1	3.703	3.601	9.0
0.25	0.3	3.703	3.601	9.0
0.42	0.5	3.703	3.601	9.0
1.42	2.0	3.703	3.601	9.0
3.15	8.0	3.703	3.601	9.0
5.53	12.0	3.703	3.601	9.0

^a The aluminium source was the saturated solution of aluminium isopropoxide in isopropanol.

Element	Content (wt%)				Average	Average
	Area 1	Area 2	Area 3	Area 4	content (wt%)	content (atom%)
Fe	54.04	44.37	55.39	53.19	51.75	24.04
Ο	40.07	40.28	38.79	40.54	39.92	64.73
Al	5.90	4.57	5.82	5.81	5.53	5.32
С	-	10.78	-	-	2.70	5.83
Cl	-	-	-	0.46	0.12	0.09

Table S2 EDX analysis of Fe₃O₄-AIP-5.53%

Fig. S1 SEM images and corresponding particle size distribution histograms of Fe_3O_4 -AC (a and b), Fe_3O_4 -AN (c and d) and Fe_3O_4 -AS (e and f).

Fig. S2 XRD patterns of Fe_3O_4 -AC, Fe_3O_4 -AN and Fe_3O_4 -AS samples. Asterisks indicate five unidentified peaks besides the diffraction peaks of Fe_3O_4 .

Fig. S3 EDX analysis of Fe_3O_4 -AIP-5.53%. (a) Detection areas and (b) Corresponding EDX spectra.

Fig. S4 XRD (a) and SEM (b) of magnetically recovered Fe₃O₄-AIP-1.42% catalyst after the reaction at the first run.

Fig. S5 Energy diagrams calculated at B3LYP/6-31+G(d,p) level by DFT. (a) Energy changes during the interaction between $[Al(OH)(H_2O)_3]^{2+}$ (1A) and H_2O_2 (B); (b) Energy changes during the interaction between $[Al(OH)(H_2O)_5]^{2+}$ (2A) and H_2O_2 (B).