Electronic Supporting Information for

Characterization of the Laccase-mediated Oligomerization of 4-Hydroxybenzoic Acid

Sjoerd Slagman, Jorge Escorihuela, Han Zuilhof and Maurice C.R. Franssen*

Laboratory of Organic Chemistry, Wageningen University. Stippeneng 4, building 124 (Helix), 6708 WE Wageningen, the Netherlands.

Correspondence: maurice.franssen@wur.nl

Figure S1 - Calibration curve for determination of 4-HBA conversion.	4
Figure S2 - Calibration curve for determination of C3-C3' dimer 1 conversion.	5
Figure S3 - Calibration curve for determination of C3-O dimer 2 conversion.	6
Figure S4 - Calibration curve for determination of C1-C3' dimer 3 conversion.	7
Figure S5 - Calibration curve for determination of C1-O dimer 4 conversion.	7
Figure S6 - Extracted ion chromatogram for 137 ± 0.50 Da (4-HBA).	8
Figure S7 - Mass spectrum corresponding to peak at 3.7 min in SI figure S6.	8
Figure S8 - Extracted ion chromatogram for 273 ± 0.50 Da (dimers).	9
Figure S9 - Mass spectrum corresponding to peak at 4.5 min in SI figure S8.	9
Figure S10 - Mass spectrum corresponding to peak at 11.8 min in SI figure S8.	10
Figure S11 - Extracted ion chromatogram for 379 \pm 0.50 Da (putative trimeric benzoquinone).	11
Figure S12 - Mass spectrum corresponding to peak at 13.3 min in SI figure S11.	11
Figure S13 - Extracted ion chromatogram for 545 \pm 0.50 Da.	12
Figure S14 - Mass spectrum corresponding to peak at 12.0 min in SI figure S13.	12
Figure S15 - Extracted ion chromatogram for 229 \pm 0.50 Da (dimer 3 and 4).	13
Figure S16 - Mass spectrum corresponding to peak at 7.7 min in SI figure S15.	13
Figure S17 - Co-injection dimer 1 and 2 with 4-HBA reaction.	14
Figure S18 - Co-injection dimer 3 with 4-HBA reaction.	14
Figure S19 - Co-injection dimer 4 with 4-HBA reaction.	15
Figure S20 - Mass spectrum for chemically synth. dimer 1 at retention time 4.5 min (LC1).	16
Figure S21 - Mass spectrum for chemically synth. dimer 2 at retention time 11.8 min (LC1).	16
Figure S22 - Mass spectrum for chemically synthesized dimer 3 at retention time 7.7 min (LC3).	17
Figure S23 - Yield of dimer 3 in the laccase-mediated oligomerization of 4-HBA over time.	17
Figure S24 - Conversion of dimer 3 by laccase over time.	18
Figure S25 - Conversion of dimer 4 by laccase over time.	19
Figure S26 - 1 H NMR spectrum of methylated precursor of dimer 1 (solvent: CDCl ₃).	20
Figure S27 - 1 H NMR spectrum of methylated precursor of dimer 2 (solvent: CDCl ₃).	20
Figure S28 - 1 H NMR spectrum of chemically synthesized dimer 1 (solvent: acetone-d ₆).	21
Figure S29 - 1 H NMR spectrum of enzymatically generated dimer 1 (solvent: acetone-d ₆).	21
Figure S30 - 1 H NMR spectrum of chemically synthesized dimer 2 (solvent: CD ₃ OD).	22
Figure S31 - 1 H NMR spectrum of enzymatically generated dimer 2 (solvent: CD ₃ OD).	22
Figure S32 - ¹³ C NMR spectrum of methylated precursor of dimer 1 (solvent: CDCl ₃).	23
Figure S33 - ¹³ C NMR spectrum of methylated precursor of dimer 2 (solvent: CDCl ₃).	23
Figure S34 - 13 C NMR spectrum of chemically synthesized dimer 1 (solvent: CD ₃ OD).	24

Figure S35 - ¹³ C NMR spectrum of chemically synthesized dimer 2 (solvent: acetone-d ₆).	24
Figure S36 - 1 H NMR spectrum of chemically synthesized dimer 3 (solvent: acetone-d ₆).	25
Figure S37 - 13 C NMR spectrum of chemically synthesized dimer 3 (solvent: acetone-d ₆).	25
Figure S38 - Optimized geometries for 4-hydroxybenzoic acid, dimer 1 and dimer 2.	26
Table S1 - Calculated relative energies for the formation of the radical cation.	26
Table S2 - Comparison of ¹ H NMR data for dimers 1 and 2.	27

Figure S1 - Calibration curve for determination of 4-HBA conversion.

Measured peak areas (UV chromatogram, 254 nm) for the peak corresponding to 4-hydroxybenzoic acid at several known concentrations (0.00 μ M, 7.76 μ M, 11.64 μ M, 15.52 μ M, 19.40 μ M, 23.28 μ M, 27.16 μ M, 31.05 μ M, 34.93 μ M, 38.81 μ M). The calibration curve is fitted along these points using the least squares method according to the formula y = ax + b. *a* (slope) and *b* (intercept at *x* = 0) are 94533 and -4933 respectively.

The measured intensity y for 4-HBA after the 24 h enzymatic reaction (after 1250× dilution): 1553881. This results in $x_{after_reaction} = 16.24 \,\mu\text{M}$ from $x_{before_reaction}$ (diluted sample) = concentration 4-HBA at time 0 = 21.89 μ M, which means 26% 4-HBA has been converted.

Figure S2 - Calibration curve for determination of C3-C3' dimer 1 conversion.

Measured peak areas (UV chromatogram, 254 nm) for the peak corresponding to C3-C3' dimer **1** at several known concentrations (0.00 μ M, 0.11 μ M, 0.17 μ M, 0.23 μ M, 0.29 μ M, 0.34 μ M, 0.40 μ M, 0.46 μ M, 0.52 μ M, 0.57 μ M). The calibration curve is fitted along these points using the least squares method according to the formula y = ax + b. a (slope) and b (intercept at x = 0) are 128760 and - 1954.2 respectively.

The measured intensity y for C3-C3' dimer **1** after the 24 h enzymatic reaction (after 1250× dilution): 26850. This results in $x_{after_reaction} = 0.22 \ \mu\text{M}$ from $x_{before_reaction}$ (diluted sample) = concentration 4-HBA at time 0 = 21.12 μ M, which means 2% 4-HBA has been converted to C3-C3' dimer **1** (2 units of 4-HBA convert to 1 unit of dimer).

Measured peak areas (UV chromatogram, 254 nm) for the peak corresponding to C3-O dimer **2** at several known concentrations (0.00 μ M, 0.72 μ M, 1.08 μ M, 1.44 μ M, 1.80 μ M, 2.16 μ M, 2.52 μ M, 2.88 μ M, 3.24 μ M, 3.60 μ M). The calibration curve is fitted along these points using the least squares method according to the formula y = ax + b. a (slope) and b (intercept at x = 0) are 144676 and -4903.6 respectively.

The measured intensity *y* for C3-O dimer **2** after the 24 h enzymatic reaction (after 10× dilution): 444224. This results in $x_{after_reaction} = 3.07 \,\mu\text{M}$ from $x_{before_reaction}$ (diluted sample) = concentration 4-HBA at time 0 = 2640 μ M, which means 0.2% 4-HBA has been converted to C3-O dimer **2** (2 units of 4-HBA convert to 1 unit of dimer).

Figure S4 - Calibration curve for determination of C1-C3' dimer 3 conversion.

Measured peak areas (UV chromatogram, 254 nm) for the peak corresponding to C1-C3' dimer **3** at several known concentrations (0.00 μ M, 1.69 μ M, 3.38 μ M, 5.07 μ M, 6.77 μ M, 8.46 μ M). The calibration curve is fitted along these points using the least squares method according to the formula y = ax + b. a (slope) and b (intercept at x = 0) are 121852 and -1836.7 respectively.

Measured peak areas (UV chromatogram, 254 nm) for the peak corresponding to C1-O dimer **4** at several known concentrations (0.00 μ M, 0.67 μ M, 1.00 μ M, 1.34 μ M, 1.67 μ M, 2.00 μ M, 2.34 μ M, 2.67 μ M, 3.01 μ M, 3.34 μ M). The calibration curve is fitted along these points using the least squares method according to the formula y = ax + b. a (slope) and b (intercept at x = 0) are 64192 and - 3492.6 respectively.

Figure S6 - Extracted ion chromatogram for 137 ± 0.50 Da (4-HBA).

Extracted ion chromatogram for 137 ± 0.50 Da (4-HBA) from LC-MS analysis of 4-HBA oligomerization (LC-separation: LC1, line smoothening applied for clarity).

Figure S7 - Mass spectrum corresponding to peak at 3.7 min in SI figure S6.

Figure S8 - Extracted ion chromatogram for 273 ± 0.50 Da (dimers).

Extracted ion chromatogram for 273 ± 0.50 Da (dimers) from LC-MS analysis of 4-HBA oligomerization (LC-separation: LC1, line smoothening applied for clarity).

Figure S9 - Mass spectrum corresponding to peak at 4.5 min in SI figure S8.

Figure S10 - Mass spectrum corresponding to peak at 11.8 min in SI figure S8.

Figure S11 - Extracted ion chromatogram for 379 ± 0.50 Da (putative trimeric benzoquinone).

Extracted ion chromatogram for 379 ± 0.50 Da (putative trimeric benzoquinone) from LC-MS analysis of 4-HBA oligomerization (LC-separation: LC1, line smoothening applied for clarity).

Figure S12 - Mass spectrum corresponding to peak at 13.3 min in SI figure S11.

Figure S13 - Extracted ion chromatogram for 545 ± 0.50 Da.

Extracted ion chromatogram for 545 \pm 0.50 Da from LC-MS analysis of laccase mediated conversion of 4-HBA and dimer **2** (LC-separation: LC2, line smoothening applied for clarity).

Figure S14 - Mass spectrum corresponding to peak at 12.0 min in SI figure S13.

Figure S15 - Extracted ion chromatogram for 229 ± 0.50 Da (dimer 3 and 4).

Extracted ion chromatogram for 229 ± 0.50 Da (dimer **3** and **4**) from LC-MS analysis of laccase mediated conversion of 4-HBA (LC-separation: LC3, line smoothening applied for clarity).

Figure S16 - Mass spectrum corresponding to peak at 7.7 min in SI figure S15.

Figure S17 - Co-injection dimer 1 and 2 with 4-HBA reaction.

Comparison of extracted ion chromatograms ($m/z \ 137 \pm 0.50 \ Da + m/z \ 273 \pm 0.50 \ Da$) of the reaction mixture from laccase-mediated oligomerization of 4-hydroxybenzoic acid at 24 h (light blue line) and the same reaction mixture spiked with chemically synthesized dimer **1** and dimer **2** (dark blue line). Separation was achieved through LC-method: LC1.

Comparison of extracted ion chromatograms ($m/z 229 \pm 0.50$ Da) of the reaction mixture from laccase-mediated oligomerization of 4-hydroxybenzoic acid at 24 h (light blue line) and the same reaction mixture spiked with chemically synthesized dimer **3** (dark blue line). Separation was achieved through LC-method: LC3.

Figure S19 - Co-injection dimer 4 with 4-HBA reaction.

Comparison of extracted ion chromatograms ($m/z 229 \pm 0.50$ Da) of the reaction mixture from laccase-mediated oligomerization of 4-hydroxybenzoic acid at 24 h (light blue line) and the same reaction mixture spiked with chemically synthesized dimer **4** (dark blue line). Separation was achieved through LC-method: LC3.

Figure S20 - Mass spectrum for chemically synth. dimer 1 at retention time 4.5 min (LC1).

16

Figure S22 - Mass spectrum for chemically synthesized dimer 3 at retention time 7.7 min (LC3).

Figure S23 - Yield of dimer 3 in the laccase-mediated oligomerization of 4-HBA over time.

4-hydroxybenzoic acid (18.5 mg, 0.13 mmol, 26.8 mM) and laccase (4.8 U, 1.0 U ml⁻¹) were reacted in a 0.02 M ammonium acetate/acetic acid buffer (pH 5, 5.0 ml). The presence of dimer **3** was monitored at 5 min, 15 min, 30 min, 1 h, 2 h, 4 h and 24 h by determination of the UV intensity corresponding to the peak of dimer **3** after LC-separation and interpolation on the respective calibration curve (SI figure S4).

Figure S24 - Conversion of dimer 3 by laccase over time.

Dimer **3** (1.6 mg, 6.8 µmol, 3.40 mM) only (blue diamonds) or in the presence of 4-hydroxybenzoic acid (red squares, 0.9 mg, 6.8 µmol, 3.40 mM) was reacted in the presence of laccase (0.51 U ml⁻¹) in a mixture of methanol and a 0.02 M ammonium acetate/acetic acid buffer (1:4.4) at room temperature and pH 5. The conversion of dimer **3** was monitored at 5 min (not for the reaction with dimer **3** only), 15 min, 30 min, 1 h, 2 h, 4 h and 24 h by determination of the UV intensity corresponding to the peak of dimer **3** after LC-separation and interpolation on the respective calibration curve (SI figure S4).

Figure S25 - Conversion of dimer 4 by laccase over time.

Dimer **4** only (blue diamonds, 4.2 mg, 18.1 μ mol, 3.40 mM) or in the presence of 4-hydroxybenzoic acid (red squares, 2.5 mg, 18.1 μ mol, 3.40 mM) was reacted in the presence of laccase (0.51 U ml⁻¹) in a mixture of methanol and a ammonium acetate/acetic acid buffer (1:4.4) at room temperature and pH 5. The conversion of dimer **4** was monitored at 5 min, 15 min, 30 min, 1 h, 2 h, 4 h and 24 h by determination of the UV intensity corresponding to the peak of dimer **4** after LC-separation and interpolation on the respective calibration curve (SI figure S5). The experiment was performed in triplicate except for time point 1 (5 min) which was conducted in duplicate. Standard deviations over the whole population are included for every time point.

Figure S26 - ¹H NMR spectrum of methylated precursor of dimer 1 (solvent: CDCl₃).

Figure S28 - ¹H NMR spectrum of chemically synthesized dimer 1 (solvent: acetone-d₆).

Figure S30 - ¹H NMR spectrum of chemically synthesized dimer 2 (solvent: CD₃OD).

Figure S32 - ¹³C NMR spectrum of methylated precursor of dimer 1 (solvent: CDCl₃).

Figure S34 - ¹³C NMR spectrum of chemically synthesized dimer 1 (solvent: CD₃OD).

 Figure S36 - ¹H NMR spectrum of chemically synthesized dimer 3 (solvent: acetone-d₆).

 Sjoerd16H.43.fid

Figure S37 - ¹³C NMR spectrum of chemically synthesized dimer 3 (solvent: acetone-d₆).

Figure S38 - Optimized geometries for 4-hydroxybenzoic acid, dimer 1 and dimer 2.

Optimized geometries obtained through quantum chemical calculations at the M11L level (6-311+G(d,p)) in water. Upper left) 4-hydroxybenzoic acid, upper middle) dimer **1**, upper right) dimer **2**, lower left) dimer **3** and lower right) dimer **4**.

Table S1 - Calculated relative energies for the formation of the radical cation.

199.1

.

B3LYP (vacuum)

acid and dimers corresponding to the geometries displayed in SI figure S38.							
Level (solvation) ^[a]	Energy gap between substrate and its radical cation ^[b]						
	4-HBA	Dimer 1	Dimer 2	Dimer 3	Dimer 4		
M11L (water)	154.9	152.7	147.8	137.1	138.1		
M11L (vacuum)	200.9	192.5	187.4	172.5	176.2		

186.6

173.8

177.6

Table S1. Calculated relative energies for the formation of the radical cation from 4-hydroxybenzoic acid and dimers corresponding to the geometries displayed in SI figure S38.

[a] Level of quantum chemical calculation with the 6-311+G(d,p) basis set. [b] Energies are given in kcal mol⁻¹.

193.2

Table S2 - Comparison of ¹H NMR data for dimers 1 and 2.

Table S2. Comparison of ¹H NMR data for 4-HBA dimers which have been chemically synthesized and dimers generated through the laccase-mediated reaction. Dimer **1**^[a]

Synthetic (δ/ppm)	Enzymatic (δ/ppm)
6.96 (d, ³ J(H,H) = 9.1 Hz, 2H)	6.94 (d, ³ <i>J</i> (H,H) = 8.4 Hz, 2H)
7.94 – 7.87 (m, 4H)	7.95 – 7.84 (m, 4H)
Dimer 2 ^[b]	
Synthetic (δ/ppm)	Enzymatic (δ/ppm)
7.02 (d, ³ J(H,H) = 8.8 Hz, 2H)	7.06 – 6.98 (m, 2H)
7.16 (d, ³ <i>J</i> (H,H) = 8.5 Hz, 1H)	7.16 (d, ³ <i>J</i> (H,H) = 8.5 Hz, 1H)
7.70 (d, ³ <i>J</i> (H,H) = 2.0 Hz, 1H)	7.70 (d, ³ <i>J</i> (H,H) = 2.1 Hz, 1H)
7.85 (dd, ³ <i>J</i> (H,H) = 8.5, 2.0 Hz, 1H)	7.85 (dd, ³ <i>J</i> (H,H) = 8.5, 2.1 Hz, 1H)
8.03 (d, ³ <i>J</i> (H,H) = 8.8 Hz, 2H)	8.07 – 7.98 (m, 2H)

[a] NMR solvent = methanol- d_4 . [b] NMR solvent = acetone- d_6 .