Electronic Supplementary Information

On the agent role of Mn^{2+} in redirecting the synthesis of $Zn(OH)_2$ towards nano-ZnO with variable morphology

D. Ghica, I. D. Vlaicu, M. Stefan, L. C. Nistor, S. V. Nistor

National Institute of Materials Physics, Atomistilor Str. 405A, Magurele, 077125, Romania

XRD parameters

Table S1. Results of the Rietveld refinement of the XRD patterns of the undoped and Mn²⁺ doped samples.

Mn ²⁺ nominal	Observed	Lattice	Crystallite
concentration	crystalline	parameters (Å)	mean size -
	phase		XRD (nm)
0 (undoped)	ϵ –Zn(OH) ₂	a = 8.4864(5)	> 100
		b = 5.1495(4)	
		c = 4.9109(4)	
1 ppm – 1000 ppm	ZnO	a = 3.253(3)	38 ± 2
		c = 5.209(5)	
5000 ppm	ZnO	a = 3.253(3)	32 ± 2
		c = 5.211(5)	

Fig. S1. TEM image of the undoped $Zn(OH)_2$ sample revealing its rod-like, plate-like morphology. The inset shows an indexed diffraction pattern of a large (1.2 µm) plate-like $Zn(OH)_2$ crystallite.

Analysis of the EPR spectra of the Mn²⁺ centers

The EPR spectra of the Mn²⁺ paramagnetic centers were analyzed using the following spin Hamiltonian (SH):¹

$$H = \mu_B \mathbf{S} \cdot \mathbf{g} \cdot \mathbf{B} + \mathbf{S} \cdot \mathbf{A} \cdot \mathbf{I} + D \left[S_z^2 - \frac{1}{3} S(S+1) \right] - \mu_N g_N \mathbf{B} \cdot \mathbf{I}$$

The first two terms represent the main Zeeman and hyperfine interactions of the S = 5/2 electron spin with the external magnetic field *B* and the I = 5/2 nuclear spin of the ⁵⁵Mn (100% abundance) isotope, respectively. The next second-order zero-field-splitting (*ZFS*) term describes the interaction of the electron spin with the local axial crystal field, while the last term describes the nuclear Zeeman interaction. The SH parameters of the Mn²⁺ centers, determined by simulation and lineshape fitting of the X- and Q-band spectra of the undoped and doped samples, are given in Table S2 together with reference parameters for the Mn²⁺ ions in other (nano)crystalline materials of interest.

Table S2. SH parameters *g*, *A* and *D*, as well as the individual linewidth (ΔB) and the standard deviation $\sigma(D)$ describing the line broadening, for the Mn²⁺ centers in the undoped and Mn²⁺ doped samples discussed in this work, along with reference data.

center / host	g	A	D [10 ⁻⁴ cm ⁻¹]	Δ <i>B</i> [mT]	ref
		[10 ⁻⁴ cm ⁻¹]	σ(D) [%D]		
Mn²⁺(a) /	2.0010	-87	> 210	$\Delta B(Q) =$	2
Zn(OH) ₂	± 0.0003	± 0.3	$\sigma(D) = 43$	0.8	this work
Mn ²⁺ (c) /	2.0012	-74	238 ± 2 $\Delta B(Q) =$		This work
ZnO:Mn (100ppm)	± 0.0001	± 0.1	$\sigma(D) = 11 \pm 1$	0.12	
			(100-1000 ppm)		
			$\sigma(D) = 13 \pm 1$		
			(5000 ppm)		
Mn ²⁺ (d) /	2.0011	-74.3	238 ± 2	$\Delta B(Q) =$	This work
ZnO:Mn (100ppm)	± 0.0001	± 0.1	$\sigma(D) = 43$	0.12	
Mn ²⁺ (x) /	2.0012	-84.7	150 - 240	$\Delta B(Q) =$	This work
ZnO:Mn (100ppm)	± 0.0001	± 0.2	$\sigma(D) = 43$	0.5	
Mn²⁺-d /	2.0012	-73.5	242ª	$\Delta B(X/Q)$	3
disordered ZnO	± 0.0001	± 0.1	$\sigma(D) = 43 \qquad \qquad = 0.2$		
(200ppm)					
Mn ²⁺ -c/	2.0012	-74	242±4, <i>a</i> - <i>F</i> =	$\Delta B(X/Q)$	3
ZnO nanocrystals	± 0.0002	± 0.2	$5.5^{a}, \sigma(D) = 7$ = 0.1		
(200ppm)					
Mn²⁺ /	2.0012	-73.4	225, <i>a</i> - <i>F</i> = 5.5		4
ZnO single crystal			$\sigma(D) = 3$		
(35000ppm)					
Mn²⁺ /	2.0012	-75.05	238.5, <i>a</i> - <i>F</i> = 5.5		4
ZnO thin film			$\sigma(D) = 3$		
(17000ppm)					

^a Included in the fitting as a fixed parameter.

FTIR absorption bands assignments

ZnO:Mn	ZnO:Mn	ZnO:Mn	ZnO:Mn	Absorption band
(1 ppm)	(50 ppm)	(1000 ppm)	(5000 ppm)	assignment
3450 w	3420 m	3420 m	3450 m	ν(-О-Н)
1640 vw	1640 vw	1640 vw	1640 vw	р(-О-Н)
1460 m	1500 w	-	-	$v_{as}(-O-NO_2)$
1390 m	1380 w	1390 w	1380 w	$v_{s}(-O-NO_{2})$
1025 vw	1025 vw	1025 vw	1025 vw	v(-N-O)
840 vw	840 vw	-	-	$\delta_{as}(-O-NO_2)$
760 vw	-	-	-	$\delta_s(-O-NO_2)$
565 m; 440 s;	565 m; 440 s;	565 m; 440 s;	565 – 425 s	v(Zn-O)
390 s	390 s	390 s		

Table S3. FTIR absorption bands assignments (in cm⁻¹) for the investigated ZnO:Mn samples.

v – stretching; ρ – rocking; δ - bending vibration modes

vw – very weak; w – weak; m – medium; s – strong: (band intensity).

References

1 A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions*, Clarendon Press, Oxford, U.K., 1970.

2 S. V. Nistor, D. Ghica, M. Stefan, I. Vlaicu, J. N. Barascu and C. Bartha, Magnetic defects in crystalline Zn(OH)₂ and nanocrystalline ZnO resulting from its thermal decomposition, *J. Alloys Compd.*, 2013, **548**, 222-227.

3 S. V. Nistor, L. C. Nistor, M. Stefan, D. Ghica, Gh. Aldica and J. N. Barascu, Crystallization of disordered nanosized ZnO formed by thermal decomposition of nanocrystalline hydrozincite, *Cryst. Growth Des.*, 2011, **11**, 5030-5038.

4 M. Diaconu, H. Schmidt, A. Poeppl, R. Bottcher, J. Hoentsch, A. Klunker, D. Spemann, H. Hochmuth, M. Lorenz and M. Grundmann, Electron paramagnetic resonance of $Zn_{1-x}Mn_xO$ thin films and single crystals, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2005, **72**, 085214(6).