## Rapid, In-Situ Plasma Functionalization of Carbon Nanotubes for Improved CNT/Epoxy Composites

Rachit Malik<sup>1</sup>, Colin McConnell<sup>2</sup>, Noe T. Alvarez<sup>2</sup>, Mark Haase<sup>2</sup>, Seyram Gbordzoe<sup>1</sup>, Vesselin Shanov<sup>1,2\*</sup>

<sup>1</sup>Department of Mechanical & Materials Engineering, University of Cincinnati, Cincinnati, OH, USA.

<sup>2</sup>Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.

\*Corresponding author, e-mail: shanovvn@ucmail.uc.edu.

Electronic Supplementary Information (ESI)




Figure S1: The epoxy resin used in this study is composed of a mixture of two epoxide compounds: (a) -4,4-Methylenebis (N, N-diglycidylaniline); (b) - N, N-Diglycidyl-4-glycidyloxyaniline plus a combination of proprietary aromatic curing agents such as (c) - N-phenyl-p-phenylenediamine; (d) -4-Aminophenyl sulfone.

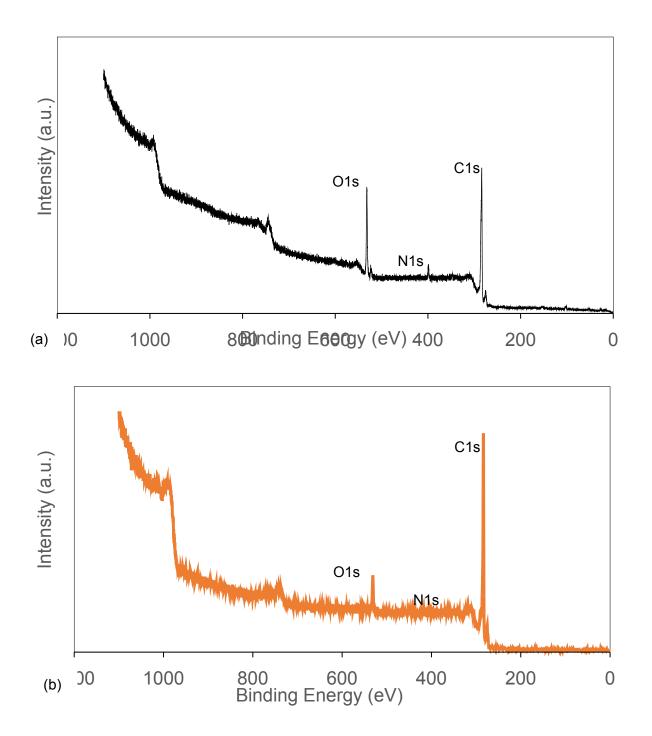



Figure S2: (a) – XPS Survey scan of plasma functionalized CNT sheets treated with epoxy solution in toluene in the absence of curing agent; (b) – XPS survey scan of plasma functionalized CNT sheet.

| Plasma<br>Power (W)♥ | % wt. CNT Content<br>→ | 100    | 82     | 63     | 42     | 24     |
|----------------------|------------------------|--------|--------|--------|--------|--------|
| 0W                   | Tensile Stress (MPa)   | 410.78 | 479.53 | 487.64 | 455.51 | 418.47 |
|                      | Modulus (GPa)          | 23.76  | 29.18  | 36.14  | 40.31  | 37.38  |
| 80W                  | Tensile Stress (MPa)   | 344.83 | 548.71 | 560.68 | 562.67 | 457.11 |
|                      | Modulus (GPa)          | 22.36  | 39.91  | 42.6   | 51.23  | 48.67  |
| 100W                 | Tensile Stress (MPa)   | 331.30 | 624.56 | 698.17 | 646.35 | 595.52 |
|                      | Modulus (GPa)          | 22.56  | 44.78  | 64.51  | 70.36  | 54.27  |

Table S1: Effect of plasma power (W) and %wt. CNT content on the mechanical properties of CNT/Epoxy composites and CNT sheets.