Supplementary Information

p-Bromoaryl- and ω-Bromoalkyl-VA-PNBs: Suitable Starting Materials for the Functionalization of Vinylic Addition Polynorbornenes via Palladium-Catalyzed Cross-Coupling Reactions

Sheila Martínez-Arranz, Eduardo Sánchez-Pérez, Jesús A. Molina de la Torre, Ignacio Pérez-Ortega, Ana C. Albéniz.*

- 1- Tables with additional experimental data.
- 2- IR and NMR spectra of the polymers.

Entry	VA-PNB, a/b (mmol Br/g)	3:BPh(OH) ₂ :[Pd] ^b	[Pd]	Solvent	% Br subst.°
1 ^d	3 , 2.4 (2.1)	200:400:1	$[Pd(PPh_3)_4]$	DMF	8
2 ^e	3 , 2.4 (2.1)	100:200:1	$[Pd(PPh_3)_4]$	DMF	34
3 ^e	3 , 1.5 (2.56)	50:200:1	[PdCl ₂ dppf]	DMF	35
$4^{\rm f}$	3 , 1.5 (2.56)	50:200:1	[PdCl ₂ dppf]	Toluene	90
$5^{\rm f}$	3 , 1.5 (2.56)	100:200:1	[PdCl ₂ dppf]	Toluene	94
$6^{\rm f}$	3 , 1.5 (2.56)	100:200:1	[PdCl ₂ dppf]	Dioxane	65

Table S1. Suzuki reactions on polymer **3**: Screening of reaction conditions to synthesize **5**.^a

a) The reactions were carried out at 90 °C for 48 h unless otherwise noted; K_2CO_3 was used as base. b) Molar ratio of reagents. c) Determined by quantitative analyses of the bromine content in the polymer product. d) 120 °C for 18 h. e) 120 °C for 48 h. f) 110 °C for 48 h.

Entry	Polymer, residual Pd	Removal method	Residual Pd after removal
1	6 , ^a 1.19 mg Pd/g	4-CF ₃ -C ₆ H ₄ I, toluene, reflux, 24 h	1 mg Pd/g
2	6 , ^a 1.6 mg Pd/g	4-CF ₃ -C ₆ H ₄ I + PPh ₃ , toluene, reflux, 24 h	0.8 mg Pd/g
3	20 , ^b 4.6 mg Pd/g	N,N-dimethyl-2- phenyldiazenecarbothioa mide, toluene, reflux, 24 h	0.47 mg Pd/g
4	7 ,° 9.8 mg Pd/g	N,N-dimethyl-2- phenyldiazenecarbothioa mide, toluene, reflux, 24 h	1.47 mg Pd/g

Table S2. Residual palladium content of some polymers before and after the removal procedures tried.

a) Method A, Table 2; 1% mol Pd; b) 5% mol Pd; c) Method B, Table 2; 5% mol Pd.

2- IR and MAS-NMR spectra of the polymers.

VA-PNBC₆H₄Br (2) IR

%Т

VA-PNBNBC₆H₄Br (3) (a/b = 1.8) IR

 $[VA-PNBNBC_6H_4-PdBr(PPh_3)_2]$ (4) ¹³C CP-MAS NMR

 $[VA-PNBNBC_6H_4-PdBr(PPh_3)_2]$ (4) ³¹P MAS NMR

VA-PNBNBC₆H₄-Ph (5) 13 C CP-MAS NMR

%T

VA-PNBNBC₆H₄-C₆H₄-4-CF₃ (6) 13 C CP-MAS NMR

VA-PNBNBC₆H₄-C₆H₄-4-CF₃ (6) ¹⁹F MAS NMR

 $VA-PNBNBC_{6}H_{4}-C_{6}H_{4}-4-CF_{3}$ (6) IR

VA-PNBNBC₆H₄-C₆H₄-4-OMe (7) ¹³C CP-MAS NMR

VA-PNBNBC₆H₄-C₆H₄-4-OMe (7) IR

%Т

VA-PNBNBC₆H₄-C₆H₃-2-Me-4-OMe (8) 13 C CP-MAS NMR

67-65 60-55-~~~M 50-45-40-%T 35-30-25-20-15-11| 4000 3500 3000 2500 1000 500400 2000 1500 cm⁻¹

VA-PNBNBC₆H₄-C₆H₃-2-Me-4-OMe (8) IR

VA-PNBNBC₆H₄-CH₂C(O)CH₃ (9) ¹³C CP-MAS NMR

$VA-PNBNBC_6H_4-CH_2C(O)CH_3$ (9) IR

VA-PNBNBC₆H₄-CH=CH₂ (10) ¹³C CP-MAS NMR

VA-PNBNBC₆H₄-CH=CH₂ (10) IR

VA-PNBNBC₆H₄-NHPh (11) 13 C CP-MAS NMR

VA-PNBNBC₆H₄-NH(C₆H₄-4-OMe) (12) 13 C CP-MAS NMR

VA-PNBNBC₆H₄-NH(C₆H₄-4-OMe) (12) IR

VA-PNBNBC₆H₄-NH(C₆H₄-3-CF₃) (13) ¹³C CP-MAS NMR

VA-PNBNBC₆H₄-NH(C₆H₄-3-CF₃) (13) ¹⁹F MAS NMR

VA-PNBNBC₆H₄-NH(C₆H₄-3-CF₃) (13) IR

VA-PNBNBC₆H₄-NH(C₆H₄-4-NO₂) (14) ¹³C CP-MAS NMR

VA-PNBNBC₆H₄-NH(C₆H₃-2,6-diMe) (15) 13 C CP-MAS NMR

VA-PNBNB(CH₂)₄Ph (17) 13 C CP-MAS NMR

VA-PNBNB(CH_2)₄Ph (17) IR

VA-PNBNB(CH₂)₄-C₆H₄-4-OMe (18) 13 C CP-MAS NMR

VA-PNBNB(CH₂)₄-C₆H₄-4-OMe (18) IR

VA-PNBNB(CH₂)₄-C₆H₄-4-CF₃ (19) 13 C CP-MAS NMR

VA-PNBNB(CH₂)₄-C₆H₄-4-CF₃ (19) ¹⁹F MAS NMR

VA-PNBNB(CH_2)₄- C_6H_4 -4- CF_3 (19) IR

VA-PNBNB(CH₂)₂-CH=CH₂ (20) ¹³C CP-MAS NMR

