Electronic Supplementary Information (ESI)

Water Exchange Reaction of a Manganese Catalase Mimic: Oxygen-17 NMR Relaxometry Study on (aqua)manganese(III) in Salen Scaffold and its reactions in mildly basic medium

V. Rao Mundlapati^{*a,b*}, Priyambada Jena^{*c*}, Achyut N. Acharya^{*c*}, Akshaya K Kar^d, Anadi C. Dash^{*d*}* and Himansu S. Biswal^{*a,b*}*

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Bhubaneswar 751 005, India. E-mail: <u>himansu@niser.ac.in</u>

^bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

^cDepartment of Chemistry, College of Engineering and Technology, Bhubaneswar 751003, India. E-mail: aacharya@cet.edu.in

^dDepartment of Chemistry, Utkal University, Bhubaneswar 751004, India.

E-mail: <u>acdash41@gmail.com</u>

ESI-MS Acquisition Parameters

Acquisition Parameter

Source Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.4 Bar 180 °C 4.0 l/min Waste
lon Optics Set Hexapole Storage Set Hexapole Extraction Set Lens 2 Set Lens 3 Set Lens 4 Set Lens 5 Set Lens 6 Set Collision Storage Set Collision Extraction Set Lens 7 Set Lens 8 Set Lens 9 Set Lens 10	45.0 V 36.0 V 0.0 V 38.0 V 30.0 V -25.0 V 25.0 V 25.0 V 25.0 V 18.5 V 3.0 V -15.0 V 0.0 V -23.0 V	TOF Set Corrector Fill Set Pulser Pull Set Pulser Push Set Reflector Set Flight Tube Set Corrector Extract Set Detector TOF	63.0 V 780.0 V 810.0 V 1700.0 V 8600.0 V 662.0 V 2020.0 V	Processing Summation Guessed Noise Peak Width Average Noise Guessed Average	5000 x 200 5 pts 1 100

Quadrupole

Set Funnel 1 RF Set Funnel 2 RF Set Hexapole RF ISCID Energy

n/a

Set Ion Energy (MS only)	5.0 eV
Set Isolation Mass (MS only)	55.00 m/z
Collision Energy	10.0 eV
Set Collision Cell RF	650.0 Vpp
Set Transfer Time	148.4 µs
Set PrePulseStorage Time	1.0 µs

n/a 300.0 Vpp 400.0 Vpp 400.0 Vpp 0.0 eV

Mass Calibration

TOF Calibration Mode Version	Version 2
TOF1 Calibration Mode	Quadratic
TOF2 Calibration Mode	Enhanced Quadratic

Figure S1 –ESI-MS of $[Mn^{III}(salen)(OH_2)_2]CIO_4$ in aqueous medium.

Figure S2(a)-ESI-Ms for[Mn^{III}(salen)(OH₂)₂](ClO₄) in acetonitrile solvent

Figure **S2(b)**- A solution of $Mn^{III}(salen)(OH_2)_2^+$ at pH =10 was equilibrated at 65°C for 100 minutes and then set aside to cool and EPR spectrum (X-band) was monitored at room temperature. No evidence of Mn^{II} and Mn^{IV} .

Figure **S3-** Time dependent repeat scan (overlapping) spectra of *trans*-Mn^{III}(salen)(OH₂)₂⁺ at pH =4.2, 50°C, [complex]_T = 6.033×10^{-5} mol dm⁻³, no. of curves 9 (time 1-174 min), final pH 4.3.

Figure **S4-** Time dependent repeat Scan Spectra of *trans*-Mn^{III}(salen)(OH₂)₂⁺ at pH =8.05, 50°C, [complex]_T = 6.033 x 10⁻⁵ mol dm⁻³;Curve no. (time, min) : 1(1), 2(15), 3(31), 4955), 5(83), 6(104), 7(132), 8(153), 9(179).The final pH of the solution 7.12.

Figure **S5-** Time dependent spectral scans (absorbance reading downwards at 380 nm) of *trans*- $Mn^{III}(salen)(OH_2)(OH)$ at pH= 10.2, 50°C , $[complex]_T = 6.033 \times 10^{-5} mol dm^{-3}$; Curve no. (time, min): 1(16),2(26),3(37),4(43),5(65),6(86),7(108), 8(133), 9(1620, 10(180)). The final pH of the solution 9.2.

Figure **S6** - A solution $(1.095 \times 10^{-3} \text{ mol dm}^{-3})$ of the complex, $[Mn^{III}(salen)(OH_2)_2]^+$ in water was adjusted to pH 10, heated at 65°C for 25 minutes, cooled to room temperature and then mass spectra was taken immediately.

Figure S7 – Conditions same as for S6; mass spectrum was taken after aging the solution at room temperature for one hr.

Scheme 1 : Interpretation of Mass spectra: m/z+ 687.07 (obs)

(a)
$$[Mn^{III}(salen)_4(OH)_2(H_2O)_3]^{2+1} m/z^{2+1} 686.5$$
 (cal)

m/z+ 687.4

m/z+ 686.4

m/z+ 687.4

Table **S1**: Line width data forvariable temperature ¹⁷O relaxation study of $Mn^{III}(salen)(OH_2)_2^+$ with [complex]_{Total} = 0.00846 mol dm⁻³.

Temp/K	1/7 K ⁻¹	$\Delta v_{\rm obs}$ /Hz	$\Delta v_{\rm solvent}/{\rm Hz}$	10 ⁶ /T _{2r}	$\Delta v_{\rm obs}$ /Hz	$\Delta v_{\rm solvent}/{\rm Hz}$	10 $^{2}/T_{2p}$
				(s ⁻¹)			(s ⁻¹)
	pH = 4				pH = 10		
283.2	0.00353	269.1	71.8	2.03	270.5	73.2	6.20
288.2	0.00347	263.4	62.4	2.07	249.5	62.5	5.87
293.2	0.00341	255.5	57.0	2.04	210.4	55.1	4.88
298.2	0.00335	275.1	44.6	2.37	142.1	45.7	3.03
303.2	0.00330	279.3	39.4	2.47	125.8	40.1	2.69
308.2	0.00324	262.8	35.1	2.34	78.1	35.4	1.34
313.2	0.00319	247.4	31.5	2.22	71.4	31.6	1.25
318.2	0.00314	231.6	28.9	2.09	65.8	28.4	1.17
323.2	0.00309	221.1	26.3	2.01	55.8	26.0	0.936
328.2	0.00305	209.4	24.4	1.90	50.6	24.0	0.835
333.2	0.00300	197.8	22.7	1.80	46.4	22.6	0.748
338.2	0.00296	186.1	21.3	1.70	43.1	21.3	0.685
343.2	0.00291	174.4	20.4	1.59	39.9	20.7	0.603
348.2	0.00287	166.4	19.6	1.51	37.7	19.7	0.565
353.2	0.00283	159.3	18.8	1.45	35.0	19.4	0.490

 $P_{m} = 3.05 \times 10^{-4} (pH 4); P_{m} = 0.8 \times 10^{-4} + C (1/298.2 - 1/7) (pH 10).^{a}$

^{*a*} $\mathbf{P}_{m} = 2[\text{complex}]_{\text{Total}}/55.5 \text{ (pH = 4). calcd. } \mathbf{P}_{m} = 0.8 \times 10^{-4} \text{ at pH = 10, 298.2 K based on}$

 $\{[Mn^{III}(salen)(OH)(OH_2]_{eq} + [Dimer]_{eq}\}/55.5, using K_{eq(av.)} = 1.5 \times 10^5 \text{ dm}^3 \text{ mol dm}^{-3} \text{ for Monomer}$ $\Rightarrow \text{ Dimer ; dimer : (OH_2)Mn^{III}(salen)-OH-Mn^{III}(salen)(OH).}$

1/T) °

Table **S2**. Calculated parameters for water exchange reaction of $[Mn^{III}(salen)(OH_2)_2]^+$.

β/Hz C/K ⁻¹	(1.43 ± 0.13) x 10 ⁹	(3.69 ± 0.52) x 10 ⁹ 0.1033 ± 0.0276
X^2/R^{2c}	0.00651/0.9479	0.03882/0.99308

^{*a*} see foot note *a* of Table **S1**. ^{*b*} held fixed at the least squares best value for calculating errors of other parameters. ^{*c*} 10 $^{6}/T_{2r}$ (s⁻¹), 10 $^{2}/T_{2p}$ (s⁻¹) values were fitted.

`Appendix –*I*

(1) First phase :

$$k_1$$

$$2A \longrightarrow Dim (Dimer) (1)$$

$$k_{-1}$$

 $1/2(-d[A]_t/dt = k_1[A]_t^2 - k_{-1}[Dim]_t$ (2)

 $k_{-1} = k_1 [A]_e^2 / [Dim]_e$

where $[A]_e$ and $[Dim]_e$ denote the concentrations of A (Mn^{III}(salen)(OH₂)(OH)) and its Dimer respectively at equilibrium, and $[A]_t$ and $[Dim]_t$ are their respective concentrations at time 't'. With $[Dim]_0 = 0$ and $[A]_0$ as the zero time concentration of A, $[Dim]_{t(e)} = ([A]_0 - [A]_{t(e)})/2$ and $k' = 2k_1$, equation (2) can be transformed to eq.(3)

$$-d[A]_t / \{([A]_t - [A]_e)([A]_0 [A]_t + [A]_0 [A]_e - [A]_e [A]_t)\} = -(k' / ([A]_0 - [A]_e))dt$$
(3)

Equ. (3) is solved to get the integrated expression :

$$\ln \left[\frac{([A]_{t} - [A]_{e})([A]_{0} + C_{I})}{([A]_{t} + C_{I}])([A]_{0} - [A]_{e})} \right] = -k^{/}([A]_{e} + C_{I})t$$
(4)

where

$$C_I = [A]_0 [A]_e / (A]_0 - [A]_e).$$

Eq. (4) yields eq. (5)

 $([A]_t - [A]_e)/([A]_t + C_I)$

$$= [([A]_0 - [A]_e)/([A]_0 + C_I)] \exp(-k'([A]_e + C_I)t)$$
(5)

which can be recast as eq (6)

$$[A]_{t} = -C_{I} + \frac{[A]_{e} + C_{I}}{1 - \{([A]_{0} - [A]_{e})/([A]_{0} + C_{I})\}\exp(-k/([A]_{e} + C_{I})t)}$$
(6)

In terms of absorbance at time t (D_t), and molar extinction coefficients of the complex (ϵ_A) and the dimer (ϵ_{Dim}):

$$D_{t} = \boldsymbol{\varepsilon}_{A} [A]_{t} + \boldsymbol{\varepsilon}_{Dim} [Dim]_{t} = \boldsymbol{\varepsilon}_{A} [A]_{t} + \boldsymbol{\varepsilon}_{Dim} ([A]_{0} - [A]_{t})/2$$
(7)

Setting $\epsilon' = \epsilon_{Dim}/2$, $D' = \epsilon' [A]_0$, $D_0 = \epsilon_A [A]_0$, $D_e = \epsilon_A [A]_e + \epsilon' ([A]_0 - [A]_e)$ eq. (7) yields,

$$A_{t} = \frac{(D' - D_{t}) (A_{0} - A_{e})}{(D_{e} - D_{0})}$$
(8)

Using equs (5 - 8), the expression for C_I , and rearranging, it is possible to get:

$$D_t = P_1 - \frac{P_2}{1 - P_3 \exp(-P_4 t)}$$
(9)

where,

$$P_{1} = D' + \frac{(D_{e} - D_{0}) [A]_{0} [A]_{e}}{([A]_{0} - [A]_{e})^{2}}$$

$$P_{2} = \frac{(D_{e} - D_{0}) (2[A]_{0}[A]_{e} - [A]_{e}^{2})}{([A]_{0} - [A]_{e})^{2}}$$

$$P_{3} = \left[\frac{[A]_{0} - [A]_{e}}{[A]_{0}}\right]^{2}$$

$$P_{4} = \frac{k'}{\left[\frac{2[A]_{0}[A]_{e} - [A]_{e}^{2}}{[A]_{0} - [A]_{e}}\right]}$$

$$[A]_{e} = [A]_{0}(1 - P_{3}^{1/2}); \quad [Dim]_{e} = ([A]_{0} - [A]_{e})/2$$

$$K_{eq} = [Dim]_{e}/[A]_{e}^{2}$$

$$k' = P_{4}P_{3}^{1/2}/\{[A]_{0}(1 - P_{3})\}$$

$$D' = P_{1} \quad [P_{2}/(1 + P_{3}^{1/2})]; \quad \varepsilon_{Dim} = 2D'/[A]_{0}$$

$$D_{0} = P_{1} - [P_{2}/(1 - P_{3})]; \quad \varepsilon_{A} = D_{0}/[A]_{0}.$$

$$D_{e} = D_{0} + [P_{2}P_{3}/(1 - P_{3})]$$

(2) <u>Second phase (a rate process preceded by equilibrium)</u>:

2A
$$\xrightarrow{K_e}$$
 Dim $\xrightarrow{k_2}$ P

where $K_e = k_1/k_{-1}$ and k_2 denotes the pseudo first order rate constant for the transformation of the dimer (Dim) to the product(s). The linear decrease of absorbance (D_t) with time (*t*) indicates that the transformation of the Dimer to Product is very slow. The absorbance – time data after the equilibrium for the first phase was analysed by the method of initial rate :

$$D_{t} = \varepsilon_{A} [A]_{t} + \varepsilon_{Dim} [Dim]_{e} exp(-k_{2}t) \approx \varepsilon_{A} [A]_{t} + \varepsilon_{Dim} [Dim]_{e} (1 - k_{2}t)$$
(10)

 $\mathbf{D}_{\mathbf{e}} = \varepsilon_{\mathbf{A}} \left[\mathbf{A} \right]_{\mathbf{e}} + \varepsilon_{\mathrm{Dim}} \left[\mathrm{Dim} \right]_{\mathbf{e}}$ (11)

From equs (10) and (11),

$$D_{t} - D_{e} = \varepsilon_{A} ([A]_{t} - [A]_{e}) - \varepsilon_{Dim} [Dim]_{e} k_{2}t$$

$$D_{t} = D_{e} - \varepsilon_{A}([A]_{e} - [A]_{t}) - \varepsilon_{Dim} [Dim]_{e} k_{2}t = D_{e}[1 - \{\varepsilon_{A}([A]_{e} - [A]_{t})/D_{e}\}] - \varepsilon_{Dim} [Dim]_{e}$$

$$k_{2}t \quad (12)$$
As $\varepsilon_{A}([A]_{e} - [A]_{t})/D_{e} \ll 1$, eq(12) reduces to eq(13)

$$D_{t} = D_{e} - \varepsilon_{Dim} [Dim]_{e} k_{2}t \quad (13)$$

and $k_2 = |G| / (\varepsilon_{\text{Dim}} [\text{Dim}]_e)$, where |G| is gradient of the D_t versus *t* plot.

Appendix -II

Treatment of line width data and evaluation of the parameters defining T_{2m}^{-1} , τ_m^{-1} (k_{ex}), and Δw_m

 $(\Delta v_{\rm obs} - \Delta v_{\rm solvent}) \pi / P_{\rm m} =$

$$T_{2r}^{-1} = \tau_m^{-1} (T_{2m}^{-2} + (T_{2m}\tau_m)^{-1} + \Delta\omega_m^2) / [(T_{2m}^{-1} + \tau_m^{-1})^2 + \Delta\omega_m^2] + T_{2os}^{-1}$$
(3a)

The contribution of $1/T_{2os}$ was neglected and

$$T_{2m}^{-1} = A_{m} \operatorname{Exp}(-E_{m}/RT);$$

$$\tau_{m}^{-1} = k_{ex} = (k_{b}T/h) \operatorname{Exp}[\Delta S^{\neq}/R - \Delta H^{\neq}/RT];$$

$$\Delta w_{m} = \beta/T$$

were substituted in equation (3a) and simplified to :

$$10^{-6}/T_{2r} = 10^{-6}$$
Up/Down (S1)

where

 $Up = Up_1 + Up_2 + Up_3$

 $Down = DD_1 + DD_2 + DD_3 + DD_4$

The Up_{is} and DD_{is} are given by the following expressions.

$$Up_{1} = A_{m}^{2}(k_{b}T/h) \operatorname{Exp}[\Delta S^{\neq}/R - (\Delta H^{\neq} + 2E_{m})/RT]$$

$$Up_{2} = A_{m}(k_{b}T/h)^{2} \operatorname{Exp}[2\Delta S^{\neq}/R - (2\Delta H^{\neq} + E_{m})/RT]$$

$$Up_{3} = [\beta^{2}k_{b}/(hT)] \operatorname{Exp}[\Delta S^{\neq}/R - \Delta H^{\neq}/RT]$$

$$DD_{1} = A_{m}^{2} \operatorname{Exp}(-2E_{m}/RT)$$

$$DD_{2} = 2(A_{m}k_{b}T/h) \operatorname{Exp}[\Delta S^{\neq}/R - (\Delta H^{\neq} + E_{m})/RT]$$

$$DD_{3} = (k_{b}T/h)^{2} \operatorname{Exp}[2\Delta S^{\neq}/R - 2\Delta H^{\neq}/RT]$$

$$DD_{4} = (\beta/T)^{2}$$

The parameters for equation S1(Y = $10^{-6}/T_{2r}$; X = 1/T) to minimize the residuals were set as :

P₁ =
$$A_{\mathbf{m}}$$
, $P_2 = E_m/R$, $P_3 = \Delta S^{\neq}/R$, $P_4 = \Delta H^{\neq}/R$ and $P_5 = \beta$.
 $k_b = 1.380658 \text{ x } 10^{-23} \text{ J K}^{-1}$, $h = 6.6260755 \text{ x } 10^{-34} \text{ J s}$ were used.