Nonlinear Optical Response Mechanism of Noncentrosymmetric Lead Borate Pb6[B4O7(OH)2]3 with Three Crystallographically Independent [B4O7(OH)2]4- Chains

(Electronic Supplementary Information: 12 pages)

Xuefei Wang,^{a, b} Fangfang Zhang,^{a,*} Bing-Hua Lei,^{a, b} Zhihua Yang,^a Shilie Pan^{a,*}

^a Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Institute of Physics and Chemistry, Chinese Academy of Sciences; Xinjiang Key Laboratory of Electronic

Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

* Corresponding authors. Emails: ffzhang@ms.xjb.ac.cn, slpan@ms.xjb.ac.cn.

Single crystal X-ray crystallography. A crystal of Pb₆[B₄O₇(OH)₂]₃ with dimensions of 0.21mm × 0.17 mm× 0.10 mm was chosen for single crystal data collection. The structural data were collected by a Bruker SMART APEX II CCD single-crystal diffractometer equipped monochromatic Mo Kα radiation (λ = 0.71073 Å) at 293 K, and obtained data was integrated with a SAINT program.¹ Numerical absorption corrections were finished by the SCALE program for the area detector.¹ Programs from the SHELXTL crystallographic software package were used for all calculations.² All the non-hydrogen atoms were solved by direct methods and refined by full-matrix least-squares techniques with anisotropic thermal parameters. Hydrogen atoms were placed by geometrical method. Final least-squares refinement is on F_0^2 with data having $F_0^2 \ge 2\sigma$ (F_0^2). The final structure was checked for missing symmetry elements with PLATON.³

Empirical formula	Pb ₆ [B ₄ O ₇ (OH) ₂] ₃
Formula weight (g·mol ^{−1})	1810.91
Crystal system	Trigonal
Space group	P3 ₂ (No.145)
<i>a</i> / Å	11.7732(5)
b/Å	11.7732(5)
c / Å	13.345(11)
V/Å ³	1601.8(16)
Z	3
F(000)	2322
Crystal size / mm ³	0.21 × 0.17 × 0.10

Table S1. Crystal data and structure refinements for Pb₆[B₄O₇(OH)₂]₃^a

ϑ _{max} / °	27.43
Reflections collected / Unique	9741 / 3873
Completeness / %	99.5
GOF on <i>F</i> ²	1.150
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0495, 0.1098
R_1 , wR_2 (all data)	0.0544, 0.1119
Flack parameter	0.01(3)
${}^{a}R_{1} = \Sigma F_{o} - F_{c} /\Sigma F_{o} $ and $wR_{2} = [\Sigma w (F_{o}^{2} - F_{o})]$	$(F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$

Table S2. The final coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) of non-hydrogen atoms for $Pb_6[B_4O_7(OH)_2]_3$. **Ueq** is defined as one-third of the trace of the orthogonalized Uij tensor, and the Bond Valence Sum (BVS) for each atom in asymmetric unit.

Atoms	x/a	y/b	z/c	$U_{ m eq}$	BVS
Pb(1)	2591(1)	3986(1)	2027(1)	11(1)	2.1
Pb(2)	5867(1)	7218(1)	3294(1)	12(1)	2.1
Pb(3)	-743(1)	1771(1)	235(1)	12(1)	2.2
Pb(4)	6014(1)	5424(1)	565(1)	10(1)	2.1
Pb(5)	2739(1)	2182(1)	-1039(1)	15(1)	2.0
Pb(6)	9165(1)	5237(1)	-775(1)	11(1)	2.1
B(1)	660(40)	-30(40)	190(30)	15(4)	3.0
B(2)	6020(30)	3400(30)	-890(20)	3(6)	3.1
B(3)	2240(30)	4450(30)	-370(30)	7(6)	3.0

B(4)	420(30)	690(30)	1930(20)	5(6)	3.0
B(5)	2790(30)	6050(30)	3500(30)	10(7)	3.1
B(6)	3760(30)	7390(30)	1920(30)	11(7)	3.0
B(7)	-1200(30)	1530(30)	-2040(30)	12(7)	3.0
B(8)	5580(40)	4390(40)	2910(30)	15(4)	3.0
B(9)	6940(30)	4060(30)	-2600(20)	5(6)	3.0
B(10)	6130(30)	8260(40)	1140(30)	15(4)	3.0
B(11)	-1160(40)	-2180(30)	-260(30)	14(7)	3.1
B(12)	5440(30)	4900(30)	-1900(20)	4(6)	2.8
O(1)	5243(17)	4048(17)	-1029(14)	4(4)	2.1
O(2)	7099(17)	3840(17)	-1548(14)	4(4)	2.1
O(3)	36(18)	430(18)	859(15)	7(4)	2.0
O(4)	10389(19)	5903(19)	1045(15)	10(4)	1.1
O(5)	1630(20)	3140(20)	-245(17)	15(5)	2.0
O(6)	-1317(18)	568(18)	-1313(15)	7(4)	2.1
O(7)	4920(20)	5050(20)	2728(16)	12(4)	1.9
O(8)	6910(20)	9581(19)	693(16)	12(4)	1.2
O(9)	6752(17)	4819(17)	2388(14)	4(4)	1.9
O(10)	2(19)	-1513(19)	234(15)	8(4)	1.9
O(11)	-40(20)	1520(20)	2341(17)	15(5)	2.0
O(12)	1736(19)	5006(19)	-1017(15)	9(4)	1.8
O(13)	8277(19)	4871(18)	-3077(15)	8(4)	1.9

O(14)	5390(18)	7349(17)	325(14)	4(4)	2.0
O(15)	3273(18)	6194(18)	2479(14)	5(4)	2.2
O(16)	589(19)	360(19)	-842(15)	10(4)	2.0
O(17)	6184(19)	4711(19)	-2741(15)	8(4)	2.1
O(18)	-2570(20)	1160(20)	-2323(17)	19(5)	1.1
O(19)	7058(18)	7871(18)	1548(14)	7(4)	1.2
O(20)	6500(17)	3711(17)	173(14)	4(4)	2.0
O(21)	3370(20)	5240(20)	201(15)	11(4)	1.9
O(22)	3815(18)	6667(18)	4187(14)	7(4)	2.0
O(23)	8130(19)	6500(19)	-188(15)	10(4)	1.8
O(24)	-520(20)	1550(20)	-2911(17)	14(5)	2.1
O(25)	278(19)	3969(19)	1712(15)	9(4)	1.1
O(26)	5250(20)	8190(20)	1961(17)	16(5)	2.0
O(27)	-690(20)	2850(20)	-1565(16)	15(5)	1.1

Table S3. Selected bond distances (Å) and bond angles (deg.) for $Pb_6[B_4O_7(OH)_2]_3$.

Pb(1)-O(15)	2.383(18)	O(6)-Pb(3)-O(5)	93.1(7)
Pb(1)-O(14)ª	2.526(19)	O(3)-Pb(3)-O(27)	135.2(7)
Pb(1)-O(7)	2.56(2)	O(6)-Pb(3)-O(27)	56.4(6)
Pb(1)-O(25)	2.745(19)	O(5)-Pb(3)-O(27)	73.5(7)
Pb(1)-O(21)	2.76(2)	O(3)-Pb(3)-O(8) ^b	80.5(6)
Pb(2)-O(7)	2.34(2)	O(6)-Pb(3)-O(8) ^b	77.4(6)

Pb(2)-O(26)	2.41(2)	O(5)-Pb(3)-O(8) ^b	159.0(6)
Pb(2)-O(22)	2.472(18)	O(27)-Pb(3)-O(8) ^b	114.5(6)
Pb(2)-O(19)	2.628(19)	O(23)-Pb(4)-O(20)	74.4(6)
Pb(3)-O(3)	2.339(18)	O(23)-Pb(4)-O(1)	86.1(6)
Pb(3)-O(6)	2.40(2)	O(20)-Pb(4)-O(1)	56.4(6)
Pb(3)-O(5)	2.52(2)	O(23)-Pb(4)-O(14)	98.8(6)
Pb(3)-O(27)	2.71(2)	O(20)-Pb(4)-O(14)	160.7(6)
Pb(3)-O(8) ^b	2.74(2)	O(1)-Pb(4)-O(14)	105.8(6)
Pb(4)-O(23)	2.38(2)	O(5)-Pb(5)-O(16)	77.8(7)
Pb(4)-O(20)	2.413(18)	O(5)-Pb(5)-O(24) ^c	89.6(7)
Pb(4)-O(1)	2.550(18)	O(16)-Pb(5)-O(24) ^c	56.7(7)
Pb(4)-O(14)	2.728(18)	O(5)-Pb(5)-O(1)	104.5(7)
Pb(5)-O(5)	2.36(2)	O(16)-Pb(5)-O(1)	171.0(6)
Pb(5)-O(16)	2.377(19)	O(24) ^c -Pb(5)-O(1)	114.5(6)
Pb(5)-O(24) ^c	2.59(2)	O(17) ^d -Pb(6)-O(2)	89.5(7)
Pb(5)-O(1)	2.654(18)	O(17) ^d -Pb(6)-O(23)	96.0(7)
Pb(6)-O(17) ^d	2.33(2)	O(2)-Pb(6)-O(23)	85.0(6)
Pb(6)-O(2)	2.384(18)	O(17) ^d -Pb(6)-O(4)	56.2(6)
Pb(6)-O(23)	2.474(19)	O(2)-Pb(6)-O(4)	142.4(6)
Pb(6)-O(4)	2.73(2)	O(23)-Pb(6)-O(4)	83.9(6)
B(1)-O(3)	1.43(4)	O(3)-B(1)-O(16)	110(3)
B(1)-O(16)	1.47(4)	O(3)-B(1)-O(24) ^c	112(3)

B(1)-O(24) ^c	1.48(4)	O(16)-B(1)-O(24) ^c	107(3)
B(1)-O(10)	1.51(4)	O(3)-B(1)-O(10)	110(3)
B(2)-O(2)	1.41(3)	O(16)-B(1)-O(10)	109(3)
B(2)-O(1)	1.47(3)	O(24) ^c -B(1)-O(10)	108(2)
B(2)-O(20)	1.50(3)	O(2)-B(2)-O(1)	114(2)
B(2)-O(9) ^e	1.50(3)	O(2)-B(2)-O(20)	110(2)
B(3)-O(5)	1.34(4)	O(1)-B(2)-O(20)	104(2)
B(3)-O(12)	1.39(4)	O(2)-B(2)-O(9) ^e	110(2)
B(3)-O(21)	1.40(4)	O(1)-B(2)-O(9) ^e	112(2)
B(4)-O(11)	1.44(4)	O(20)-B(2)-O(9) ^e	106(2)
B(4)-O(3)	1.48(4)	O(5)-B(3)-O(12)	120(3)
B(4)-O(16) ^c	1.51(4)	O(5)-B(3)-O(21)	119(3)
B(4)-O(6) ^c	1.51(3)	O(12)-B(3)-O(21)	121(3)
B(5)-O(22)	1.40(4)	O(11)-B(4)-O(3)	109(2)
B(5)-O(15)	1.46(4)	O(11)-B(4)-O(16) ^c	108(2)
B(5)-O(14)ª	1.49(4)	O(3)-B(4)-O(16)°	109(2)
B(5)-O(21) ^a	1.54(4)	O(11)-B(4)-O(6) ^c	111(2)
B(6)-O(15)	1.44(4)	O(3)-B(4)-O(6) ^c	110(2)
B(6)-O(22) ^f	1.49(4)	O(16) ^c -B(4)-O(6) ^c	109(2)
B(6)-O(12)ª	1.50(4)	O(22)-B(5)-O(15)	111(2)
B(6)-O(26)	1.52(4)	O(22)-B(5)-O(14)ª	114(2)
B(7)-O(24)	1.41(4)	O(15)-B(5)-O(14)ª	105(2)

B(7)-O(6)	1.45(4)	O(22)-B(5)-O(21)ª	112(2)
B(7)-O(18)	1.49(4)	O(15)-B(5)-O(21)ª	107(2)
B(7)-O(27)	1.49(4)	O(14)ª-B(5)-O(21)ª	107(2)
B(8)-O(13) ^g	1.35(4)	O(15)-B(6)-O(22) ^f	112(2)
B(8)-O(7)	1.37(4)	O(15)-B(6)-O(12)ª	113(3)
B(8)-O(9)	1.39(4)	O(22) ^f -B(6)-O(12) ^a	105(2)
B(9)-O(17)	1.45(3)	O(15)-B(6)-O(26)	111(2)
B(9)-O(2)	1.45(4)	O(22) ^f -B(6)-O(26)	109(2)
B(9)-O(20) ^e	1.49(3)	O(12)ª-B(6)-O(26)	107(2)
B(9)-O(13)	1.51(3)	O(24)-B(7)-O(6)	113(3)
B(10)-O(14)	1.47(4)	O(24)-B(7)-O(18)	109(3)
B(10)-O(26)	1.48(4)	O(6)-B(7)-O(18)	106(3)
B(10)-O(8)	1.48(4)	O(24)-B(7)-O(27)	114(3)
B(10)-O(19)	1.49(4)	O(6)-B(7)-O(27)	111(3)
B(11)-O(23) ^b	1.35(4)	O(18)-B(7)-O(27)	103(2)
B(11)-O(10)	1.36(4)	O(13) ^g -B(8)-O(7)	121(3)
B(11)-O(11) ^h	1.40(4)	O(13) ^g -B(8)-O(9)	123(3)
B(12)-O(1)	1.48(3)	O(7)-B(8)-O(9)	116(3)
B(12)-O(25) ^f	1.49(3)	O(17)-B(9)-O(2)	113(2)
B(12)-O(4) ^e	1.49(3)	O(17)-B(9)-O(20) ^e	109(2)
B(12)-O(17)	1.50(4)	O(2)-B(9)-O(20) ^e	111(2)
O(15)-Pb(1)-O(14)ª	56.8(6)	O(17)-B(9)-O(13)	109(2)

O(15)-Pb(1)-O(7)	71.2(6)	O(2)-B(9)-O(13)	110(2)
O(14)ª-Pb(1)-O(7)	86.6(6)	O(20) ^e -B(9)-O(13)	106(2)
O(15)-Pb(1)-O(25)	80.7(6)	O(14)-B(10)-O(26)	112(3)
O(14) ^a -Pb(1)-O(25)	72.5(6)	O(14)-B(10)-O(8)	108(3)
O(7)-Pb(1)-O(25)	151.2(6)	O(26)-B(10)-O(8)	115(3)
O(15)-Pb(1)-O(21)	78.5(6)	O(14)-B(10)-O(19)	107(3)
O(14) ^a -Pb(1)-O(21)	132.4(6)	O(26)-B(10)-O(19)	108(3)
O(7)-Pb(1)-O(21)	94.2(6)	O(8)-B(10)-O(19)	107(2)
O(25)-Pb(1)-O(21)	86.1(6)	O(23) ^b -B(11)-O(10)	120(3)
O(7)-Pb(2)-O(26)	100.7(7)	O(23) ^b -B(11)-O(11) ^h	118(3)
O(7)-Pb(2)-O(22)	89.9(7)	O(10)-B(11)-O(11) ^h	121(3)
O(26)-Pb(2)-O(22)	89.7(7)	O(1)-B(12)-O(25) ^f	112(2)
O(7)-Pb(2)-O(19)	85.8(7)	O(1)-B(12)-O(4) ^e	106(2)
O(26)-Pb(2)-O(19)	56.7(7)	O(25) ^f -B(12)-O(4) ^e	106(2)
O(22)-Pb(2)-O(19)	144.3(6)	O(1)-B(12)-O(17)	113(2)
O(3)-Pb(3)-O(6)	89.9(7)	O(25) ^f -B(12)-O(17)	112(2)
O(3)-Pb(3)-O(5)	80.8(7)	O(4) ^e -B(12)-O(17)	107(2)

Symmetry transformations used to generate equivalent atoms:

(a)-x+y,-x+1,z+1/3	(b) x-1,y-1,z	(c)-x+y,-x,z+1/3
(d)-x+y+1,-x+1,z+1/3	(e)-y+1,x-y,z-1/3	(f)-y+1,x-y+1,z-1/3
(g)-y+1,x-y,z+2/3	(h)-y,x-y,z-1/3	(i) x+1,y+1,z

(j)-x+y+1,-x+1,z-2/3

Microphotography.

Fig. S1 Microphotography of $Pb_6[B_4O_7(OH)_2]_3$.

Powder XRD. Powder X-ray diffraction (PXRD) was carried out by a Bruker D2 PHASER X-ray diffractometer equipped a diffracted beam monochromator for obtaining Cu K α radiation whose wavelength is 1.5418 Å. The scan step is 0.02 ° per second with the angular range of 10-70 ° (see Fig. S2).

Fig. S2 Experimental and calculated XRD patterns of $Pb_6[B_4O_7(OH)_2]_3$.

Fig. S3 Two crystallographicly independent $[B_4O_8]^{4-}$ chains in Bi $[B_4O_6(OH)_2]OH$.

IR spectroscopy. The IR spectrum was determined by a Shimadzu IR Affinity-1 Fourier transform infrared spectrometer for the range of 400 to 4000 cm⁻¹. Incidentally, the sample for the IR spectrum measurement is composed by dried high-purity KBr (400 mg) and the polycrystalline powder of $Pb_6[B_4O_7(OH)_2]_3$ (4 mg).

The structural units of Pb₆[B₄O₇(OH)₂]₃ were confirmed by IR spectrum (see Fig. S4). The absorption peaks at 1305 cm⁻¹ and 955 cm⁻¹ were recognized, which could be assigned to the asymmetric stretching vibrations and symmetric stretching vibrations of $[BO_3]^{3-}$. Analogously, the asymmetric and symmetric stretching vibrations of $[BO_4]^{5-}$ groups correspond to the peaks at 1036 and 734 cm⁻¹, respectively. The bending vibrations of $[BO_3]^{3-}$ and $[BO_4]^{5-}$ can also be found in the range of 400-800 cm⁻¹. These peaks in the curve are similar to other reported borates, which confirm the existence of $[BO_3]^{3-}$ and $[BO_4]^{5-}$ groups.⁴ Furthermore, the presence of OH⁻ was shown by the broad absorption peak in the range of near 3450 cm⁻¹.

Fig. S4 The IR spectrum of $Pb_6[B_4O_7(OH)_2]_3$.

Notes and references

- S1 SAINT, Version 7.60A; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2008.
- S2 G. M. Sheldrick, SHELXTL, Version 6.14; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2008.
- S3 A. Spek, J. Appl. Crystallogr., 2003, **36**, 7-13.
- (a) Q. Jing, X. Dong, Z. Yang and S. Pan, *Dalton Trans.*, 2015, 44, 16818-16823; (b) D. An, Q. Kong,
 M. Zhang, Y. Yang, D. Li, Z. Yang, S. Pan, H. Chen, Z. Su, Y. Sun and M. Mutailipu, *Inorg. Chem.*,
 2016, 55, 552-554; (c) M. Wen, X. Su, H. Wu, J. Lu, Z. Yang and S. Pan, *J. Phys. Chem. C*, 2016,
 120, 6190-6197; (d) Y. Yang, X. Su, S. Pan and Z. Yang, *Phys. Chem. Chem. Phys.*, 2015, 17, 2635926368.